ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В выпуклом четырёхугольнике ABCD точка M – середина диагонали AC, точка N – середина диагонали BD. Прямая MN пересекает стороны AB и CD в точках M' и N'. Доказать, что если  MM' = NN',  то  BC || AD.

   Решение

Задачи

Страница: << 33 34 35 36 37 38 39 >> [Всего задач: 330]      



Задача 52471

Темы:   [ Вписанный четырехугольник с перпендикулярными диагоналями ]
[ Средняя линия треугольника ]
Сложность: 4
Классы: 8,9

Четырёхугольник ABCD, диагонали которого взаимно перпендикулярны, вписан в окружность с центром O. Найдите расстояние от точки O до стороны AB, если известно, что CD = 8.

Прислать комментарий     Решение


Задача 54813

Темы:   [ Ортоцентр и ортотреугольник ]
[ Средняя линия треугольника ]
Сложность: 4
Классы: 8,9

Отрезки, соединяющие основания высот остроугольного треугольника, равны 5, 12 и 13. Найдите радиус описанной около треугольника окружности.
Прислать комментарий     Решение


Задача 55502

Темы:   [ Вписанные и описанные окружности ]
[ Средняя линия треугольника ]
[ Описанные четырехугольники ]
Сложность: 4
Классы: 8,9

Найдите отношение сторон прямоугольного треугольника, если известно, что одна половина гипотенузы (от вершины до середины гипотенузы) видна из центра вписанной окружности под прямым углом.

Прислать комментарий     Решение


Задача 66925

Темы:   [ Вневписанные окружности ]
[ Средняя линия треугольника ]
[ Вписанные четырехугольники (прочее) ]
[ Три точки, лежащие на одной прямой ]
Сложность: 4
Классы: 8,9,10,11

Автор: Уткин А.

В треугольнике $ABC$ $I$ – центр вписанной окружности, вневписанная окружность с центром $I_A$ касается стороны $BC$ в точке $A'$. Через $I$ проведена прямая $l\perp BI$. Оказалось, что $l$ пересекает $I_AA'$ в точке $K$, лежащей на средней линии, параллельной $BC$. Докажите, что $\angle B\leq 60^{\circ}$.
Прислать комментарий     Решение


Задача 78103

Темы:   [ Четырехугольники (прочее) ]
[ Средняя линия треугольника ]
[ Векторы помогают решить задачу ]
Сложность: 4
Классы: 10,11

В выпуклом четырёхугольнике ABCD точка M – середина диагонали AC, точка N – середина диагонали BD. Прямая MN пересекает стороны AB и CD в точках M' и N'. Доказать, что если  MM' = NN',  то  BC || AD.

Прислать комментарий     Решение

Страница: << 33 34 35 36 37 38 39 >> [Всего задач: 330]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .