Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 20 задач
Версия для печати
Убрать все задачи

Автор: Губанов С.

Про треугольник $ABC$ известно, что точка, симметричная ортоцентру относительно центра описанной окружности, лежит на стороне $BC$. Пусть $A_1$ – основание высоты, проведенной из точки $A$. Докажите, что $A_1$ лежит на окружности, проходящей через середины трёх высот треугольника $ABC$.

Вниз   Решение


Разрежем на четыре части. Разрежьте каждую из фигур на четыре равные части (резать можно по сторонам и диагоналям клеток).


ВверхВниз   Решение


У двух человек было два квадратных торта. Каждый сделал на своем торте по 2 прямолинейных разреза от края до края. При этом у одного получилось три куска, а у другого — четыре. Как это могло быть?

ВверхВниз   Решение


В клетках доски  n×n  произвольно расставлены числа от 1 до n². Докажите, что найдутся две такие соседние клетки (имеющие общую вершину или общую сторону), что стоящие в них числа отличаются не меньше чем на  n + 1.

ВверхВниз   Решение


В распоряжении юного паркетчика имеется 10 одинаковых плиток, каждая из которых состоит из 4 квадратов и имеет форму буквы Г (все плитки ориентированы одинаково). Может ли он составить из них прямоугольник размером 5×8? (Плитки можно поворачивать, но нельзя переворачивать. Например, на рисунке изображено неверное решение: заштрихованная плитка неправильно ориентирована.)

ВверхВниз   Решение


AK – биссектриса треугольника ABC, P и Q – точки на двух других биссектрисах (или на их продолжениях) такие, что  PA = PK  и  QA = QK.
Докажите, что  ∠PAQ = 90° – ½ ∠A.

ВверхВниз   Решение


Снегирь. Итак, мама воскликнула — «Чудеса!», и сразу же мама, папа и дети отправились в зоомагазин. «Но здесь больше пятидесяти снегирей, как мы выберем», — чуть не заплакал младший брат, увидев снегирей. «Не волнуйся», — сказал старший, — «их меньше пятидесяти». «Главное,» — сказала мама, — «что здесь есть хотя бы один!» «Да, забавно,» — подытожил папа, — «из трех ваших фраз только одна соответствует действительности». Сможете ли Вы сказать, сколько снегирей было в магазине, зная, что снегиря мне купили?

ВверхВниз   Решение


Дан вписанный четырехугольник $ABCD$. На сторонах $AD$ и $CD$ взяты точки $E$ и $F$ так, что $AE=BC$ и $AB=CF$. Пусть $M$ – середина $EF$. Докажите, что угол $AMC$ прямой.

ВверхВниз   Решение


Раскрасьте рисунок в четыре цвета так, чтобы соседние части были покрашены в разные цвета.
б) Можно ли обойтись тремя цветами?

ВверхВниз   Решение


В таблице 10×10 по порядку расставлены числа от 0 до 99 (в первой строке – от 0 до 9, во второй – от 10 до 19 и т.д.). Затем перед каждым из чисел поставлен знак "+" или "–" так, что в каждой строке и каждом столбце оказалось по пять знаков "+" и пять знаков "–".

Чему может быть равна сумма всех чисел таблицы с учетом расставленных знаков?

ВверхВниз   Решение


Автор: Ботин Д.А.

Разрежьте квадрат на три части, из которых можно сложить треугольник с тремя острыми углами и тремя различными сторонами.

ВверхВниз   Решение


Автор: Дидин М.

В стране рыцарей (всегда говорят правду) и лжецов (всегда лгут) за круглым столом сидят в вершинах правильного десятиугольника 10 человек, среди которых есть лжецы. Путешественник может встать куда-то и спросить сидящих: "Каково расстояние от меня до ближайшего лжеца из вас?" После этого каждый отвечает ему. Какое минимальное количество вопросов должен задать путешественник так, чтобы гарантированно узнать, кто за столом лжецы? (Посторонних рядом нет, на стол вставать нельзя. Людей считайте точками. Все, включая путешественника, могут точно измерить любое расстояние.)

ВверхВниз   Решение


У Джузеппе есть лист фанеры, размером 22×15. Джузеппе хочет из него вырезать как можно больше прямоугольных заготовок размером 3×5. Как это сделать?

ВверхВниз   Решение


Дан треугольник ABC. Найдите внутри его точку O, для которой сумма длин отрезков OA, OB, OC минимальна. (Обратите внимание на тот случай, когда один из углов треугольника больше 120o.)

ВверхВниз   Решение


Разрежьте изображённую на рисунке доску на четыре одинаковые части, чтобы каждая из них содержала три заштрихованные клетки.

ВверхВниз   Решение


Два рыбака поймали 80 рыб, причём 5/9 улова первого составляли караси, а 7/11 улова второго – окуни. Сколько рыб поймал каждый из них?

ВверхВниз   Решение


В трапеции ABCD ( BC$ \Vert$AD) известно, что AD = 3 . BC. Прямая пересекает боковые стороны трапеции в точках M и N, AM : MB = 3 : 5, CN : ND = 2 : 7. Найдите отношение площадей четырёхугольников MBCN и AMND.

ВверхВниз   Решение


На боковых сторонах $AB$ и $BC$ равнобедренного треугольника $ABC$ отмечены точки $D$ и $E$ так, что $\angle BED = 3\angle BDE$. Точка $D'$ симметрична точке $D$ относительно прямой $AC$. Докажите, что прямая $D'E$ проходит через точку пересечения биссектрис треугольника $ABC$.

ВверхВниз   Решение


Найдите внутри треугольника ABC точку O, для которой сумма квадратов расстояний от нее до сторон треугольника минимальна.

ВверхВниз   Решение


Расставить в таблице 4×4 16 чисел так, чтобы сумма чисел по любой вертикали, горизонтали и диагонали равнялась нулю. (Таблица имеет 14 диагоналей, включая все малые, состоящие из трёх, двух и одной клеток. Хотя бы одно из чисел должно быть отлично от нуля.)

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 219]      



Задача 78096

Темы:   [ Числовые таблицы и их свойства ]
[ Подсчет двумя способами ]
Сложность: 3
Классы: 8,9

В прямоугольной таблице, составленной из положительных чисел, произведение суммы чисел любого столбца на сумму чисел любой строки равно числу, стоящему на их пересечении. Доказать, что сумма всех чисел в таблице равна единице.

Прислать комментарий     Решение

Задача 78238

Темы:   [ Числовые таблицы и их свойства ]
[ Примеры и контрпримеры. Конструкции ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3
Классы: 8,9

Доказать, что если n чётно, то числа 1, 2, 3, ..., n² можно таким образом расположить в квадратную таблицу n×n, чтобы суммы чисел, стоящих в каждом столбце, были одинаковы.

Прислать комментарий     Решение

Задача 78651

Темы:   [ Числовые таблицы и их свойства ]
[ Примеры и контрпримеры. Конструкции ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3
Классы: 7,8,9,10

Расставить в таблице 4×4 16 чисел так, чтобы сумма чисел по любой вертикали, горизонтали и диагонали равнялась нулю. (Таблица имеет 14 диагоналей, включая все малые, состоящие из трёх, двух и одной клеток. Хотя бы одно из чисел должно быть отлично от нуля.)

Прислать комментарий     Решение

Задача 88187

Темы:   [ Числовые таблицы и их свойства ]
[ Инварианты ]
Сложность: 3
Классы: 6,7,8

На клетке b8 шахматной доски написано число –1, а на всех остальных клетках число 1. Разрешается одновременно менять знак во всех клетках одной вертикали или одной горизонтали. Докажите, что сколько бы раз мы это ни проделывали, невозможно добиться, чтобы все числа в таблице стали положительными.

Прислать комментарий     Решение

Задача 98071

Темы:   [ Числовые таблицы и их свойства ]
[ Шахматные доски и шахматные фигуры ]
[ Доказательство от противного ]
[ Принцип крайнего (прочее) ]
Сложность: 3
Классы: 7,8,9

В клетках доски  n×n  произвольно расставлены числа от 1 до n². Докажите, что найдутся две такие соседние клетки (имеющие общую вершину или общую сторону), что стоящие в них числа отличаются не меньше чем на  n + 1.

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 219]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .