ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На витрине ювелирного магазина лежат 15 бриллиантов. Рядом с ними стоят таблички с указанием масс, на которых написано 1, 2, ..., 15 карат. У продавца есть чашечные весы и четыре гирьки массами 1, 2, 4 и 8 карат. Покупателю разрешается только один тип взвешиваний: положить один из бриллиантов на одну чашу весов, а гирьки — на другую и убедиться, что масса на соответствующей табличке указана верно. Однако за каждую взятую гирьку нужно заплатить продавцу 100 монет. Если гирька снимается с весов и в следующем взвешивании не участвует, продавец забирает её. Какую наименьшую сумму придётся заплатить, чтобы проверить массы всех бриллиантов? Нужно узнать пятизначный номер телефона, задавая вопросы, на которые возможен ответ "да" или "нет". За какое наименьшее число вопросов это гарантированно можно сделать (при условии, что на вопросы даются правильные ответы)? В школе провели турнир по настольному теннису. Турнир состоял из нескольких туров. В каждом туре каждый участник играл ровно в одном матче, а каждый матч судил один из не участвовавших в нем игроков. После нескольких туров оказалось, что каждый участник сыграл по одному разу с каждым из остальных. Может ли оказаться, что все участники турнира судили одинаковое количество встреч? В классе имеется a1 учеников, получивших в течение года хотя бы одну двойку, a2 учеников, получивших не менее двух двоек, ..., ak учеников, получивших не менее k двоек. Сколько всего двоек в этом классе? (Предполагается, что ни у кого нет более k двоек.) Дана таблица размера m×n (m, n > 1). В ней отмечены центры всех клеток. Какое наибольшее число отмеченных центров можно выбрать так, чтобы никакие три из них не являлись вершинами прямоугольного треугольника? Какое наименьшее число выстрелов в игре "Морской бой" на доске 7*7 нужно сделать, чтобы наверняка ранить четырехпалубный корабль (четырехпалубный корабль состоит из четырех клеток, расположенных в один ряд)? Выведите из теоремы 61013 то, что (Продолжение задачи 32796)
На знакомом нам заводе вырезают металлические диски диаметром 1 м. Известно, что диск диаметром ровно 1 м весит ровно 100 кг. При изготовлении возникает ошибка измерения, и поэтому стандартное отклонение радиуса составляет 10 мм. Инженер Сидоров считает, что стопка из 100 дисков в среднем будет весить 10000 кг. На сколько ошибается инженер Сидоров? Верхняя сторона бумажного квадрата белая, а нижняя – красная. В квадрате случайным образом выбирается точка F. Затем квадрат сгибают так, чтобы одна случайно выбранная вершина наложилась на точку F. Найдите математическое ожидание числа сторон появившегося красного многоугольника. Планета "Тетраинкогнито", покрытая "океаном", имеет форму правильного тетраэдра с ребром 900 км.
Наименьший из углов прямоугольного треугольника равен
Две окружности разных радиусов касаются в точке A одной и
той же прямой и расположены по разные стороны от неё. Отрезок AB
-- диаметр меньшей окружности. Из точки B проведены две прямые,
касающиеся большей окружности в точках M и N. Прямая, проходящая
через точки M и A, пересекают меньшую окружность в точке K.
Известно, что
MK =
Треугольники ABC и ADC имеют общую сторону AC; стороны AD и BC пересекаются в точке M. Углы B и D равны по 40°. Расстояние между вершинами D и B равно стороне AB, ∠AMC = 70°. Найдите углы треугольников ABC и ADC.
Основания трапеции равны a и b. Известно, что через середину одной из её сторон можно провести прямую, делящую трапецию на два четырёхугольника, в каждый из которых можно вписать окружность. Найдите другую боковую сторону этой трапеции.
Четырехугольник $ABCD$ без равных и без параллельных сторон описан около окружности с центром $I$. Точки $K$, $L$, $M$ и $N$ – середины сторон $AB$, $BC$, $CD$ и $DA$. Известно, что $AB\cdot CD=4IK\cdot IM$. Докажите, что $BC\cdot AD=4IL\cdot IN$.
Докажите, что в выпуклый четырёхугольник, суммы противоположных сторон которого равны между собой, можно вписать окружность.
Даны 3 окружности O1, O2, O3, проходящие через одну точку O. Вторые точки пересечения O1 с O2, O2 с O3 и O3 с O1 обозначим соответственно через A1, A2 и A3. На O1 берем произвольную точку B1. Если B1 не совпадает с A1, то проводим через B1 и A1 прямую до второго пересечения с O2 в точке B2. Если B2 не совпадет с A2, то проводим через B2 и A2 прямую до второго пересечения с O3 в точке B3. Если B3 не совпадет с A3, то проводим через B3 и A3 прямую до второго пересечения с O1 в точке B4. Докажите, что B4 совпадает с B1. Можно ли расположить 12 одинаковых монет вдоль стенок большой квадратной коробки так, чтобы вдоль каждой стенки лежало ровно В поход пошли 20 туристов. Самому старшему из них 35 лет, а самому младшему 20 лет. Верно ли, что среди туристов есть одногодки? В ковре размером 4 х 4 метра моль проела 15 дырок. Всегда ли можно вырезать коврик размером 1х1, не содержащий внутри дырок? (Дырки считаются точечными). |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 4212]
В поход пошли 20 туристов. Самому старшему из них 35 лет, а самому младшему 20 лет. Верно ли, что среди туристов есть одногодки?
100 фишек выставлены в ряд. Разрешено менять местами две фишки, стоящие через одну фишку.
Докажите, что найдутся двадцать москвичей, имеющих одинаковое число волос на голове.
Можно ли расположить 12 одинаковых монет вдоль стенок большой квадратной коробки так, чтобы вдоль каждой стенки лежало ровно
В ковре размером 4 х 4 метра моль проела 15 дырок. Всегда ли можно вырезать коврик размером 1х1, не содержащий внутри дырок? (Дырки считаются точечными).
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 4212]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке