ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

Равны ли треугольники:  а) по двум сторонам и углу;  б) по стороне и двум углам?

Вниз   Решение


Основание пирамиды – квадрат со стороной a , высота пирамиды проходит через середину одной из сторон основания и равна . Найдите радиус описанной сферы.

ВверхВниз   Решение


Окружность разделена точками A, B, C, D так, что  ⌣AB : ⌣ BC : ⌣ CD : ⌣ DA = 3 : 2 : 13 : 7.  Хорды AD и BC продолжены до пересечения в точке M.
Найдите угол AMB.

ВверхВниз   Решение


Автор: Фольклор

Отмечены вершины и середины сторон правильного десятиугольника (то есть всего отмечено 20 точек).
Сколько существует треугольников с вершинами в отмеченных точках?

ВверхВниз   Решение


Основание пирамиды – прямоугольный треугольник с гипотенузой a и острым углом 30o . Высота пирамиды проходит через середину наименьшей из сторон основания и равна a . Найдите радиус описанной сферы.

ВверхВниз   Решение


Докажите, что середины всех хорд данной длины, проведённых в данной окружности, лежат на некоторой окружности.

ВверхВниз   Решение


Окружность разделена точками A, B, C, D так, что  ⌣AB : ⌣BC : ⌣CD : ⌣DA = 2 : 3 : 5 : 6.  Проведены хорды AC и BD, пересекающиеся в точке M.
Найдите угол AMB.

ВверхВниз   Решение


В выпуклом четырехугольнике ABCD взят четырехугольник KLMN, образованный центрами тяжести треугольников ABC, BCD, DBA и CDA. Доказать, что прямые, соединяющие середины противоположных сторон четырехугольника ABCD, пересекаются в той же точке, что и прямые, соединяющие середины противоположных сторон четырехугольника KLMN.

ВверхВниз   Решение


Метод итераций. Для того, чтобы приближенно решить уравнение, допускающее запись f (x) = x, применяется метод итераций. Сначала выбирается некоторое число x0, а затем строится последовательность {xn} по правилу xn + 1 = f (xn) (n $ \geqslant$ 0). Докажите, что если эта последовательность имеет предел x* = $ \lim\limits_{n\to\infty}^{}$xn, и функция f (x) непрерывна, то этот предел является корнем исходного уравнения: f (x*) = x*.

ВверхВниз   Решение


Площадь основания пирамиды равна s . Через середину высоты пирамиды проведена плоскость, параллельная плоскости основания. Найдите площадь полученного сечения.

Вверх   Решение

Задачи

Страница: 1 2 3 4 >> [Всего задач: 19]      



Задача 109368

Темы:   [ Подобие ]
[ Объем призмы ]
Сложность: 3
Классы: 10,11

Высота пирамиды равна 3, площадь основания равна 9. Найдите объём призмы, одно основание которой принадлежит основанию пирамиды, а противоположное основание является сечением пирамиды плоскостью, проходящей на расстоянии 1 от вершины.
Прислать комментарий     Решение


Задача 67052

Темы:   [ Подобие ]
[ Параллелограммы (прочее) ]
[ Шестиугольники ]
[ Правильные многоугольники ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 4
Классы: 8,9,10,11

Автор: Кноп К.А.

Параллелограмм $ABCD$ разделён диагональю $BD$ на два равных треугольника. В треугольник $ABD$ вписан правильный шестиугольник так, что две его соседние стороны лежат на $AB$ и $AD$, а одна из вершин – на $BD$. В треугольник $CBD$ вписан правильный шестиугольник так, что две его соседние вершины лежат на $CB$ и $CD$, а одна из сторон – на $BD$. Какой из шестиугольников больше?

Прислать комментарий     Решение

Задача 98213

Темы:   [ Подобие ]
[ Примеры и контрпримеры. Конструкции ]
[ Пятиугольники ]
Сложность: 4
Классы: 8,9

Существует ли такой выпуклый пятиугольник, от которого некоторая прямая отрезает подобный ему пятиугольник?

Прислать комментарий     Решение

Задача 87001

Темы:   [ Свойства сечений ]
[ Подобие ]
Сложность: 3
Классы: 8,9

Площадь основания пирамиды равна s . Через середину высоты пирамиды проведена плоскость, параллельная плоскости основания. Найдите площадь полученного сечения.
Прислать комментарий     Решение


Задача 87619

Темы:   [ Построение сечений ]
[ Подобие ]
Сложность: 3
Классы: 10,11

Ребро BD пирамиды ABCD перпендикулярно плоскости ADC . Докажите, что сечением этой пирамиды плоскостью, проходящей через точку D и середины рёбер AB и BC , является треугольник, подобный треугольнику ABC . Чему равен коэффициент подобия?
Прислать комментарий     Решение


Страница: 1 2 3 4 >> [Всего задач: 19]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .