|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Равны ли треугольники: а) по двум сторонам и углу; б) по стороне и двум углам? Основание пирамиды – квадрат со стороной a , высота пирамиды проходит через середину одной из сторон основания и равна Окружность разделена точками A, B, C, D так, что ⌣AB : ⌣ BC : ⌣ CD : ⌣ DA = 3 : 2 : 13 : 7. Хорды AD и BC продолжены до пересечения в точке M.
Отмечены вершины и середины сторон правильного десятиугольника (то есть всего отмечено 20 точек). Основание пирамиды – прямоугольный треугольник с гипотенузой a и острым углом 30o . Высота пирамиды проходит через середину наименьшей из сторон основания и равна a . Найдите радиус описанной сферы. Докажите, что середины всех хорд данной длины, проведённых в данной окружности, лежат на некоторой окружности. Окружность разделена точками A, B, C, D так, что ⌣AB : ⌣BC : ⌣CD : ⌣DA = 2 : 3 : 5 : 6.
Проведены хорды AC и BD, пересекающиеся в точке M. В выпуклом четырехугольнике ABCD взят четырехугольник KLMN, образованный центрами тяжести треугольников ABC, BCD, DBA и CDA. Доказать, что прямые, соединяющие середины противоположных сторон четырехугольника ABCD, пересекаются в той же точке, что и прямые, соединяющие середины противоположных сторон четырехугольника KLMN. Метод итераций. Для того, чтобы приближенно решить уравнение, допускающее запись f (x) = x, применяется метод итераций. Сначала выбирается некоторое число x0, а затем строится последовательность {xn} по правилу xn + 1 = f (xn) (n Площадь основания пирамиды равна s . Через середину высоты пирамиды проведена плоскость, параллельная плоскости основания. Найдите площадь полученного сечения. |
Страница: 1 2 3 4 >> [Всего задач: 19]
Параллелограмм $ABCD$ разделён диагональю $BD$ на два равных треугольника. В треугольник $ABD$ вписан правильный шестиугольник так, что две его соседние стороны лежат на $AB$ и $AD$, а одна из вершин – на $BD$. В треугольник $CBD$ вписан правильный шестиугольник так, что две его соседние вершины лежат на $CB$ и $CD$, а одна из сторон – на $BD$. Какой из шестиугольников больше?
Существует ли такой выпуклый пятиугольник, от которого некоторая прямая отрезает подобный ему пятиугольник?
Страница: 1 2 3 4 >> [Всего задач: 19] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|