ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На плоскости расположено 20 точек, никакие три из которых не лежат на одной
прямой, из них 10 синих и 10 красных.
Даны точки A(1;0;1) , B(-2;2;1) , C(2;0;3) и D(0;4;-2) . Составьте параметрические уравнения прямой, проходящей через начало координат и пересекающей прямые AB и CD . Дан куб ABCDA1B1C1D1 с ребром a . Найдите расстояние между прямыми BD1 и DC1 и постройте их общий перпендикуляр. В треугольной пирамиде ABCD известно, что CD = a , а перпендикуляр, опущенный из середины ребра AB на CD , равен b и образует равные углы α с гранями ACD и BCD . Найдите объём пирамиды.
Периметр ромба равен 48, а сумма диагоналей равна 26. Найдите площадь ромба.
Дан остроугольный треугольник ABC. Точки A0 и C0 – середины меньших дуг соответственно BC и AB его описанной окружности. Окружность, проходящая через A0 и C0, пересекает прямые AB и BC в точках P и S, Q и R соответственно (все эти точки различны). Известно, что PQ∥AC. Докажите, что A0P+C0S=C0Q+A0R Найдите расстояния между скрещивающимися медианами двух граней правильного тетраэдра со стороной a . На боковых сторонах AD и BC трапеции ABCD взяты точки P и Q соответственно, причём AP:PD = 3:2 . Отрезок PQ разбивает трапецию на части, одна из которых по площади вдвое больше другой. Найдите отношение CQ:QB , если AB:CD = 3:2 .
Перпендикуляр, опущенный из вершины прямоугольника на его диагональ, делит её в отношении 1:3. Найдите диагональ, если известно, что точка её пересечения с другой диагональю удалена от большей стороны на расстояние, равное 2.
С помощью циркуля и линейки постройте ромб по данному отношению диагоналей и данной стороне.
Докажите, что число 40...09 – не полный квадрат (при любом числе нулей, начиная с 1). Докажите, что все вписанные в эллипс ромбы описаны вокруг одной окружности.
Докажите, что число вида a0...09 – не полный квадрат (при любом числе нулей, начиная с одного; a – цифра, отличная от 0).
Составьте уравнение плоскости, содержащей прямую
|
Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 217]
Дан треугольник ABC и точка H на прямой AB . Докажите, что CH — высота треугольника ABC тогда и только тогда, когда AC2-BC2=AH2-BH2 .
На плоскости даны две точки A и B. Найдите
ГМТ M, для которых AM : BM = k (окружность Аполлония).
Докажите, что все вписанные в эллипс ромбы описаны вокруг одной окружности.
На графике многочлена с целыми коэффициентами отмечены две точки с целыми координатами.
Составьте уравнение плоскости, содержащей прямую
Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 217]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке