Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 15 задач
Версия для печати
Убрать все задачи

Автор: Фольклор

У прямого кругового конуса длина образующей равна 5, а диаметр равен 8.

Найдите наибольшую площадь треугольного сечения, которая может получиться при пересечении конуса плоскостью.

Вниз   Решение


Высота прямоугольного треугольника, проведённая из вершины прямого угла, делит гипотенузу на отрезки, равные a и b. Найдите катеты.

ВверхВниз   Решение


Докажите, что при инверсии с центром O окружность, проходящая через O, переходит в прямую, а окружность, не проходящая через O, — в окружность.

ВверхВниз   Решение


Автор: Bhattacharya A.

Пусть точки $P$ и $Q$ изогонально сопряжены относительно треугольника $ABC$. Точка $A_1$, лежащая на дуге $BC$ описанной около треугольника окружности $\omega$, удовлетворяет условию $\angle BA_1P=\angle CA_1Q$. Точки $B_1$ и $C_1$ определены аналогично. Докажите, что прямые $AA_1$, $BB_1$ и $CC_1$ пересекаются в одной точке.

ВверхВниз   Решение


Докажите, что при инверсии с центром O прямая l, не проходящая через O, переходит в окружность, проходящую через O.

ВверхВниз   Решение


Докажите неравенство  2m+n–2mn,  где m и n – натуральные числа.

ВверхВниз   Решение


К окружности, вписанной в равнобедренный треугольник с основанием 12 и высотой 8, проведена касательная, параллельная основанию.
Найдите длину отрезка этой касательной, заключённого между сторонами треугольника.

ВверхВниз   Решение


Каждую из трех котлет нужно пожарить на сковороде с двух сторон в течение пяти минут каждую сторону. На сковороде умещается только две котлеты. Можно ли сжарить все три котлеты быстрее, чем за 20 минут (временем на переворачивание и перекладывание котлет пренебрегаем)?

ВверхВниз   Решение


Ковровая дорожка покрывает лестницу из 9 ступенек. Длина и высота лестницы равны 2 метрам. Хватит ли этой ковровой дорожки, чтобы покрыть лестницу из 10 ступенек длиной и высотой 2 метра?

ВверхВниз   Решение


Доказать, что для любого треугольника отрезок, соединяющий центры вписанной и вневписанной окружностей, делится описанной окружностью пополам.

ВверхВниз   Решение


Дан треугольник ABC. На прямых AB, BC и CA взяты точки C1, A1, и B1 соответственно, отличные от вершин треугольника. Докажите, что окружности, описанные около треугольников AB1C1, A1B1C, A1BC1, пересекаются в одной точке.

ВверхВниз   Решение


В треугольнике ABC угол A больше угла B. Докажите, что длина стороны BC больше половины длины стороны AB.

ВверхВниз   Решение


Окружность разделена в отношении 5:9:10 и через точки деления проведены касательные. Найдите наибольший угол в полученном треугольнике.

ВверхВниз   Решение


В треугольнике ABC сторона BC равна полусумме двух других сторон. Через точку A и середины B', C' сторон AB и AC проведена окружность Ω и к ней из центра тяжести треугольника проведены касательные. Доказать, что одна из точек касания является центром I вписанной окружности треугольника ABC.

ВверхВниз   Решение


Из бумаги вырезали два одинаковых треугольника ABC и A'B'C' и положили их на стол, перевернув при этом один из треугольников.
Докажите, что середины отрезков AA', BB' и CC' лежат на одной прямой.

Вверх   Решение

Задачи

Страница: << 1 2 [Всего задач: 10]      



Задача 57908

Тема:   [ Композиции движений. Теорема Шаля ]
Сложность: 6
Классы: 9

Пусть движение плоскости переводит фигуру F в фигуру F'. Для каждой пары соответственных точек A и A' рассмотрим середину X отрезка AA'. Докажите, что либо все точки X совпадают, либо все они лежат на одной прямой, либо образуют фигуру, подобную F.
Прислать комментарий     Решение


Задача 98562

Темы:   [ Свойства параллельного переноса ]
[ Симметрия помогает решить задачу ]
[ Композиции движений. Теорема Шаля ]
Сложность: 3+
Классы: 9,10,11

Из бумаги вырезали два одинаковых треугольника ABC и A'B'C' и положили их на стол, перевернув при этом один из треугольников.
Докажите, что середины отрезков AA', BB' и CC' лежат на одной прямой.

Прислать комментарий     Решение

Задача 78676

Темы:   [ Композиции поворотов ]
[ Процессы и операции ]
[ Круг, сектор, сегмент и проч. ]
[ Композиции движений. Теорема Шаля ]
Сложность: 5-
Классы: 8,9,10

Круглый пирог режут следующим образом. Вырезают сектор с углом $ \alpha$, переворачивают его на другую сторону и весь пирог поворачивают на угол $ \beta$. Дано, что $ \beta$ < $ \alpha$ < 180o. Доказать, что после некоторого конечного числа таких операций каждая точка пирога будет находиться на том же месте, что и в начале.
Прислать комментарий     Решение


Задача 110755

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Свойства симметрий и осей симметрии ]
[ Биссектриса делит дугу пополам ]
[ Композиции движений. Теорема Шаля ]
[ Композиция центральных симметрий ]
[ Ортогональная (прямоугольная) проекция ]
Сложность: 7-
Классы: 9,10,11

Четырехугольник ABCD вписан в окружность с центром O . Точки C' , D' симметричны ортоцентрам треугольников ABD и ABC относительно O . Докажите, что если прямые BD и BD' симметричны относительно биссектрисы угла B , то прямые AC и AC' симметричны относительно биссектрисы угла A .
Прислать комментарий     Решение


Задача 73714

Темы:   [ Ортоцентр и ортотреугольник ]
[ Итерации ]
[ Неравенства для углов треугольника ]
[ Геометрические интерпретации в алгебре ]
[ Признаки подобия ]
[ Сжимающие отображения и неподвижные точки ]
[ Композиции движений. Теорема Шаля ]
Сложность: 5
Классы: 9,10,11

Для каждого непрямоугольного треугольника T обозначим через T1 треугольник, вершинами которого служат основания высот треугольника T; через T2 – треугольник, вершинами которого служат основания высот треугольника T1; аналогично определим треугольники T3, T4 и так далее. Каким должен быть треугольник T, чтобы
  а) треугольник T1 был остроугольным?
  б) в последовательности T1, T2, T3, ... встретился прямоугольный треугольник Tn (и таким образом треугольник Tn+1 не определён)?
  в) треугольник T3 был подобен треугольнику T?
  г) Для каждого натурального числа n выясните, сколько существует неподобных друг другу треугольников T, для которых треугольник Tn подобен треугольнику Т.

Прислать комментарий     Решение

Страница: << 1 2 [Всего задач: 10]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .