ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Какие значения может принимать наибольший общий делитель натуральных чисел m и n, если известно, что при увеличении числа m на 6 он увеличивается в 9 раз? В прямоугольнике ABCD точка M – середина стороны CD. Через точку C провели прямую, перпендикулярную прямой BM, а через точку M – прямую, перпендикулярную диагонали BD. Докажите, что два проведённых перпендикуляра пересекаются на прямой AD. Даны равнобедренный прямоугольный треугольник ABC и прямоугольный треугольник ABD с общей гипотенузой AB (D и C лежат по одну сторону от прямой AB). Пусть DK – биссектриса треугольника ABD. Докажите, что центр описанной окружности треугольника ACK лежит на прямой AD. a, b, c – натуральные числа, НОД(a, b, c) = 1 и Точка A лежит внутри правильного десятиугольника X1...X10, а точка B — вне его. Пусть a = Доказать, что наибольший общий делитель суммы двух чисел и их наименьшего общего кратного равен наибольшему общему делителю самих чисел. Число сторон многоугольника A1...An нечётно. Докажите, что: Звенья AB, BC и CD ломаной ABCD равны по длине и касаются некоторой окружности. В прямоугольнике с целыми сторонами m и n, нарисованном на клетчатой бумаге, проведена диагональ. В строку выписано m натуральных чисел. За один ход можно прибавить по единице к некоторым n из этих чисел.
Площадь треугольника ABC равна S,
Прямая, проходящая через центры двух окружностей называется их линией центров. В трапеции ABCD даны основания AD = 12 и BC = 3. На продолжении стороны BC выбрана такая точка M, что прямая AM отсекает от трапеции треугольник, площадь которого составляет ¾ площади трапеции. Найдите CM. Можно ли n раз рассадить 2n + 1 человек за круглым столом, чтобы никакие двое не сидели рядом более одного раза, если Стороны выпуклого пятиугольника ABCDE продолжили так,
что образовалась пятиконечная звезда
AHBKCLDMEN (рис.).
Около треугольников — лучей звезды описали окружности. Докажите,
что пять точек пересечения этих окружностей, отличных от A, B, C,
D, E, лежат на одной окружности.
Правильный пятиугольник ABCDE со стороной a вписан в
окружность S. Прямые, проходящие через его вершины перпендикулярно
сторонам, образуют правильный пятиугольник со стороной b (см. рис.).
Сторона правильного пятиугольника, описанного около окружности S,
равна c. Докажите, что
a2 + b2 = c2.
В равнобедренном треугольнике ABC (AB = BC) проведены
высоты AA1, BB1 и CC1. Дано n попарно взаимно простых чисел, больших 1 и меньших (2n – 1)². Докажите, что среди них обязательно есть простое число. В треугольнике ABC AB = BC, ∠B = 20°. Точка M на основании AC такова, что AM : MC = 1 : 2, точка H – проекция C на BM. Найдите угол AHB. Используя пять двоек, арифметические действия и возведение в степень, составьте числа от 1 до 5. |
Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 5999]
Дедка вдвое сильнее Бабки, Бабка втрое сильнее Внучки, Внучка вчетверо сильнее Жучки, Жучка впятеро сильнее Кошки, Кошка вшестеро сильнее Мышки. Дедка, Бабка, Внучка, Жучка и Кошка вместе с Мышкой могут вытащить Репку, а без Мышки — не могут. Сколько надо позвать Мышек, чтобы они смогли сами вытащить Репку?
Три купчихи — Сосипатра Титовна, Олимпиада Карповна и Поликсена Уваровна — сели пить чай. Олимпиада Карповна и Сосипатра Титовна выпили вдвоем 11 чашек, Поликсена Уваровна и Олимпиада Карповна — 15, а Сосипатра Титовна и Поликсена Уваровна — 14. Сколько чашек чая выпили все три купчихи вместе?
Используя пять двоек, арифметические действия и возведение в степень, составьте числа от 1 до 5.
Используя пять двоек, арифметические действия и возведение в степень, составьте числа от 11 до 15.
Отличник Поликарп составлял максимальное пятизначное число, которое состоит из различных нечётных цифр. Двоечник Колька составлял минимальное пятизначное число, которое состоит из различных чётных цифр. Какие числа должны были составить Поликарп и Колька?
Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 5999]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке