Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Материалы по этой теме:
Подтемы:
Фильтр
Сложность с по   Класс с по  
Выбрано 20 задач
Версия для печати
Убрать все задачи

Какие значения может принимать наибольший общий делитель натуральных чисел m и n, если известно, что при увеличении числа m на 6 он увеличивается в 9 раз?

Вниз   Решение


В прямоугольнике ABCD точка M – середина стороны CD. Через точку C провели прямую, перпендикулярную прямой BM, а через точку M – прямую, перпендикулярную диагонали BD. Докажите, что два проведённых перпендикуляра пересекаются на прямой AD.

ВверхВниз   Решение


Даны равнобедренный прямоугольный треугольник ABC и прямоугольный треугольник ABD с общей гипотенузой AB (D и C лежат по одну сторону от прямой AB). Пусть DK – биссектриса треугольника ABD. Докажите, что центр описанной окружности треугольника ACK лежит на прямой AD.

ВверхВниз   Решение


a, b, c – натуральные числа,  НОД(a, b, c) = 1  и     Докажите, что  a – b  – точный квадрат.

ВверхВниз   Решение


Точка A лежит внутри правильного десятиугольника X1...X10, а точка B — вне его. Пусть  a = + ... +   и  b = + ... + .
Может ли оказаться, что  |a| > |b| ?

ВверхВниз   Решение


Доказать, что наибольший общий делитель суммы двух чисел и их наименьшего общего кратного равен наибольшему общему делителю самих чисел.

ВверхВниз   Решение


Число сторон многоугольника A1...An нечётно. Докажите, что:
  а) если этот многоугольник вписанный и все его углы равны, то он правильный;
  б) если этот многоугольник описанный и все его стороны равны, то он правильный.

ВверхВниз   Решение


Звенья AB, BC и CD ломаной ABCD равны по длине и касаются некоторой окружности.
Доказать, что точка K касания этой окружности со звеном BC, её центр O и точка пересечения прямых AC и BD лежат на одной прямой.

ВверхВниз   Решение


В прямоугольнике с целыми сторонами m и n, нарисованном на клетчатой бумаге, проведена диагональ.
  а) Через какое число узлов она проходит?
  б) На сколько частей эта диагональ делится линиями сетки?

ВверхВниз   Решение


В строку выписано m натуральных чисел. За один ход можно прибавить по единице к некоторым n из этих чисел.
Всегда ли можно сделать все числа равными?

ВверхВниз   Решение


Площадь треугольника ABC равна S, $ \angle$BAC = $ \alpha$, $ \angle$BCA = $ \gamma$. Найдите AB.

ВверхВниз   Решение


Прямая, проходящая через центры двух окружностей называется их линией центров.
Докажите, что общие внешние (внутренние) касательные к двум окружностям пересекаются на линии центров этих окружностей.

ВверхВниз   Решение


В трапеции ABCD даны основания  AD = 12  и  BC = 3.  На продолжении стороны BC выбрана такая точка M, что прямая AM отсекает от трапеции треугольник, площадь которого составляет ¾ площади трапеции. Найдите CM.

ВверхВниз   Решение


Автор: Жуков Г.

Можно ли n раз рассадить  2n + 1  человек за круглым столом, чтобы никакие двое не сидели рядом более одного раза, если
 а)  n = 5;  б)  n = 4;  в) n – произвольное натуральное число?

ВверхВниз   Решение


Стороны выпуклого пятиугольника ABCDE продолжили так, что образовалась пятиконечная звезда AHBKCLDMEN (рис.). Около треугольников — лучей звезды описали окружности. Докажите, что пять точек пересечения этих окружностей, отличных от A, B, C, D, E, лежат на одной окружности.


ВверхВниз   Решение


Правильный пятиугольник ABCDE со стороной a вписан в окружность S. Прямые, проходящие через его вершины перпендикулярно сторонам, образуют правильный пятиугольник со стороной b (см. рис.). Сторона правильного пятиугольника, описанного около окружности S, равна c. Докажите, что  a2 + b2 = c2.


ВверхВниз   Решение


В равнобедренном треугольнике ABC  (AB = BC)  проведены высоты AA1, BB1 и CC1.
Найдите отношение площади треугольника A1B1C1 к площади треугольника ABC, если   AB/A1B1 = .

ВверхВниз   Решение


Дано n попарно взаимно простых чисел, больших 1 и меньших  (2n – 1)².  Докажите, что среди них обязательно есть простое число.

ВверхВниз   Решение


В треугольнике ABC  AB = BC,  ∠B = 20°.  Точка M на основании AC такова, что  AM : MC = 1 : 2,  точка H – проекция C на BM. Найдите угол AHB.

ВверхВниз   Решение


Используя пять двоек, арифметические действия и возведение в степень, составьте числа от 1 до 5.

Вверх   Решение

Задачи

Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 5999]      



Задача 98697

Тема:   [ Арифметика. Устный счет и т.п. ]
Сложность: 2
Классы: 4,5

Дедка вдвое сильнее Бабки, Бабка втрое сильнее Внучки, Внучка вчетверо сильнее Жучки, Жучка впятеро сильнее Кошки, Кошка вшестеро сильнее Мышки. Дедка, Бабка, Внучка, Жучка и Кошка вместе с Мышкой могут вытащить Репку, а без Мышки — не могут. Сколько надо позвать Мышек, чтобы они смогли сами вытащить Репку?
Прислать комментарий     Решение


Задача 98698

Темы:   [ Арифметика. Устный счет и т.п. ]
[ Подсчет двумя способами ]
Сложность: 2
Классы: 5,6

Три купчихи — Сосипатра Титовна, Олимпиада Карповна и Поликсена Уваровна — сели пить чай. Олимпиада Карповна и Сосипатра Титовна выпили вдвоем 11 чашек, Поликсена Уваровна и Олимпиада Карповна — 15, а Сосипатра Титовна и Поликсена Уваровна — 14. Сколько чашек чая выпили все три купчихи вместе?
Прислать комментарий     Решение


Задача 98702

Тема:   [ Арифметические действия. Числовые тождества ]
Сложность: 2
Классы: 5

Используя пять двоек, арифметические действия и возведение в степень, составьте числа от 1 до 5.
Прислать комментарий     Решение


Задача 98707

Тема:   [ Арифметические действия. Числовые тождества ]
Сложность: 2
Классы: 5,6

Используя пять двоек, арифметические действия и возведение в степень, составьте числа от 11 до 15.
Прислать комментарий     Решение


Задача 98708

Тема:   [ Десятичная система счисления ]
Сложность: 2
Классы: 4,5

Отличник Поликарп составлял максимальное пятизначное число, которое состоит из различных нечётных цифр. Двоечник Колька составлял минимальное пятизначное число, которое состоит из различных чётных цифр. Какие числа должны были составить Поликарп и Колька?

Прислать комментарий     Решение

Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 5999]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .