ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 143 144 145 146 147 148 149 >> [Всего задач: 2404]      



Задача 87454

Темы:   [ Тела вращения ]
[ Объем круглых тел ]
Сложность: 3
Классы: 10,11

В круг вписан правильный треугольник. Найдите отношение объёмов тел, полученных от вращения круга и треугольника вокруг диаметра, проходящего через вершину треугольника. В ответе укажите отношение меньшего объёма к большему (с точностью до сотых).
Прислать комментарий     Решение


Задача 87455

Темы:   [ Конус ]
[ Поверхность круглых тел ]
Сложность: 3
Классы: 10,11

Металлический шар радиуса , перелит в конус, боковая поверхность которого в три раза больше площади основания. Найдите высоту конуса.
Прислать комментарий     Решение


Задача 87457

Темы:   [ Сферы (прочее) ]
[ Объем шара, сегмента и проч. ]
Сложность: 3
Классы: 10,11

Проведены две параллельные плоскости по одну сторону от центра шара на расстоянии 3 друг от друга. Эти плоскости дают в сечении два малых круга, радиусы которых соответственно равны 9 и 12. Найдите объём шара.
Прислать комментарий     Решение


Задача 87458

Темы:   [ Параллелепипеды (прочее) ]
[ Площадь сечения ]
Сложность: 3
Классы: 10,11

Основанием наклонного параллелепипеда служит ромб, сторона которого равна 60. Плоскость диагонального сечения, проходящая через большую диагональ основания, перпендикулярна плоскости основания. Площадь этого сечения равна 7200. Найдите меньшую диагональ основания, если боковое ребро равно 80 и образует с плоскостью основания угол 60o .
Прислать комментарий     Решение


Задача 87469

Темы:   [ Правильная пирамида ]
[ Двугранный угол ]
Сложность: 3
Классы: 10,11

Тангенсы двугранных углов при основании правильной треугольной пирамиды равны 3. Найдите длину отрезка, соединяющего середину стороны основания с серединой противоположного ребра, если сторона основания пирамиды равна .
Прислать комментарий     Решение


Страница: << 143 144 145 146 147 148 149 >> [Всего задач: 2404]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .