Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Известно, что модули всех корней уравнений  x² + Ax + B = 0,  x² + Cx + D = 0  меньше единицы. Доказать, что модули корней уравнения
x² + ½ (A + C)x + ½ (B + D)x = 0  также меньше единицы. A, B, C, D – действительные числа.

Вниз   Решение


Окружность радиуса R, проведённая через вершины A, B и C прямоугольной трапеции ABCD ( $ \angle$A = $ \angle$B = 90o) пересекает отрезки AD и CD соответственно в точках M и N, причём AM : AD = CN : CD = 1 : 3. Найдите площадь трапеции.

ВверхВниз   Решение


В пространстве (но не в одной плоскости) расположены шесть различных точек: A, B, C, D, E и F. Известно, что отрезки AB и DE, BC и EF, CD и FA попарно параллельны. Докажите, что эти же отрезки и попарно равны.

Вверх   Решение

Задачи

Страница: << 165 166 167 168 169 170 171 >> [Всего задач: 2399]      



Задача 108826

Темы:   [ Линейные зависимости векторов ]
[ Углы между прямыми и плоскостями ]
Сложность: 3
Классы: 8,9

Высота правильной треугольной пирамиды равна 6 , боковое ребро образует с плоскостью основания угол 45o . Найдите расстояние от центра основания пирамиды до боковой грани.
Прислать комментарий     Решение


Задача 108837

Темы:   [ Медиана пирамиды (тетраэдра) ]
[ Медиана пирамиды (тетраэдра) ]
Сложность: 3
Классы: 8,9

Даны три вектора , и . Докажите, что вектор перпендикулярен вектору (· ) - (· ) .
Прислать комментарий     Решение


Задача 108841

Темы:   [ Равногранный тетраэдр ]
[ Достроение тетраэдра до параллелепипеда ]
Сложность: 3
Классы: 8,9

Тетраэдр называется равногранным, если все его грани – равные между собой треугольники. Докажите, что если достроить равногранный тетраэдр до параллелепипеда, проведя через его противоположные рёбра пары параллельных плоскостей, то получится прямоугольный параллелепипед,
Прислать комментарий     Решение


Задача 108843

Темы:   [ Равногранный тетраэдр ]
[ Развертка помогает решить задачу ]
Сложность: 3
Классы: 8,9

Докажите, что если все грани тетраэдра равны (равногранный тетраэдр), то его развёртка на плоскость грани есть треугольник.
Прислать комментарий     Решение


Задача 108844

Темы:   [ Равногранный тетраэдр ]
[ Развертка помогает решить задачу ]
Сложность: 3
Классы: 8,9

Суммы плоских углов при каждой из трёх вершин тетраэдра равны по 180o . Докажите, что все грани тетраэдра равны (т.е. тетраэдр – равногранный).
Прислать комментарий     Решение


Страница: << 165 166 167 168 169 170 171 >> [Всего задач: 2399]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .