Страница:
<< 81 82 83 84
85 86 87 >> [Всего задач: 1957]
Верно ли, что любые 100 карточек, на которых написано по одной цифре 1, 2 или 3,
встречающейся не более чем по 50 раз каждая, можно разложить в один ряд так, чтобы в нём не
было фрагментов 11, 22, 33, 123 и 321?
В треугольнике ABC точка M – середина стороны AC,
точка P лежит на стороне BC. Отрезок AP пересекает BM в точке O. Оказалось, что BO = BP.
Найдите отношение OM : PC.
|
|
Сложность: 3 Классы: 7,8,9
|
На доске написаны четыре трёхзначных числа, в сумме дающие 2012. Для записи их всех были использованы только две различные цифры.
Приведите пример таких чисел.
|
|
Сложность: 3 Классы: 7,8,9
|
Кузнечик умеет прыгать только ровно на 50 см. Он хочет обойти 8 точек, отмеченных на рисунке (сторона клетки равна 10 см). Какое наименьшее количество прыжков ему придётся сделать? (Разрешается посещать и другие точки плоскости, в том числе не узлы сетки. Начинать и заканчивать можно в любых точках.)
|
|
Сложность: 3 Классы: 8,9,10
|
В стране Далёкой провинция называется крупной, если в ней живёт более 7% жителей этой страны. Известно, что для каждой крупной провинции найдутся такие две провинции с меньшим населением , что их суммарное население больше, чем у этой крупной провинции. Какое наименьшее число провинций может быть в стране Далёкой?
Страница:
<< 81 82 83 84
85 86 87 >> [Всего задач: 1957]