Страница:
<< 3 4 5 6
7 8 9 >> [Всего задач: 49]
|
|
Сложность: 4- Классы: 9,10,11
|
В белом клетчатом квадрате 2021×2021 требуется закрасить чёрным две
клетки. После этого через каждую минуту одновременно закрашиваются чёрным все клетки, которые граничат по стороне хоть с одной из уже закрашенных. Ваня выбрал две начальные клетки так, чтобы весь квадрат закрасился как можно быстрее. Через сколько минут закрасился квадрат?
|
|
Сложность: 4- Классы: 9,10,11
|
Дан отрезок $AB$. Точки $X, Y, Z$ в пространстве выбираются так, чтобы $ABX$
был правильным треугольником, а $ABYZ$ – квадратом.
Докажите, что ортоцентры всех получающихся таким образом треугольников $XYZ$ попадают на некоторую фиксированную окружность.
|
|
Сложность: 4- Классы: 9,10,11
|
Дан отрезок [0, 1]. За ход разрешается разбить любой из имеющихся отрезков точкой на два новых отрезка и записать на доску произведение длин этих двух новых отрезков.
Докажите, что ни в какой момент сумма чисел на доске не превысит ½.
|
|
Сложность: 4- Классы: 8,9,10,11
|
В прямоугольный треугольник с гипотенузой длины 1 вписали окружность. Через точки её касания с его катетами провели прямую.
Отрезок какой длины может высекать на этой прямой окружность, описанная около исходного треугольника?
|
|
Сложность: 4- Классы: 9,10,11
|
На плоскости сидят кузнечик Коля и 2020 его товарищей. Коля собирается совершить прыжок через каждого из остальных кузнечиков (в произвольном порядке) так, что начальная и конечная точка каждого прыжка симметричны относительно перепрыгиваемого кузнечика. Назовём точку финишной, если Коля может в неё попасть после 2020-го прыжка. При каком наибольшем числе $N$ найдётся начальная расстановка кузнечиков, для которой имеется ровно $N$ различных возможных финишных точек?
Страница:
<< 3 4 5 6
7 8 9 >> [Всего задач: 49]