|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Годы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Прямая, проходящая через вершину C равнобедренного треугольника ABC, пересекает основание AB в точке M, а описанную окружность в точке N. Докажите, что CM . CN = AC2 и CM/CN = AM . BM/(AN . BN). |
Страница: << 102 103 104 105 106 107 108 >> [Всего задач: 1984]
Два человека A и B должны попасть из пункта M в пункт N, расположенный в 15 км от M. Пешком они могут передвигаться со скоростью 6 км/ч. Кроме того, в их распоряжении есть велосипед, на котором можно ехать со скоростью 15 км/ч. A отправляется в путь пешком, а B едет на велосипеде до встречи с пешеходом C, идущим из N и M. Дальше B идёт пешком, а C едет на велосипеде до встречи с A и передаёт ему велосипед, на котором тот и приезжает в N. Когда должен выйти из N пешеход C, чтобы A и B прибыли в пункт N одновременно (если он идёт пешком с той же скоростью, что A и B)?
arcsin cos arcsin x и arccos sin arccos x.
В трёхгранный угол с вершиной S вписана сфера с центром в точке O.
Если при любом положительном p все корни уравнения ax² + bx + c + p = 0 действительны и положительны, то коэффициент a равен нулю. Докажите.
Докажите, что если квадрат числа начинается с 0,999...9 (100 девяток), то и само число начинается с 0,999...9 (100 девяток).
Страница: << 102 103 104 105 106 107 108 >> [Всего задач: 1984] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|