Страница:
<< 116 117 118 119
120 121 122 >> [Всего задач: 1957]
|
|
Сложность: 3+ Классы: 7,8,9,10
|
Известно, что при любом целом K ≠ 27 число a – K1964 делится без остатка на 27 – K. Найти a.
На квадратном поле размерами
99×99, разграфленном на клетки размерами
1×1, играют двое. Первый игрок ставит крестик на центр поля; вслед за
этим второй игрок может поставить нолик на любую из восьми клеток, окружающих
крестик первого игрока. После этого первый ставит крестиктна любое из полей рядом с уже занятыми и т.д. Первый игрок выигрывает, если ему удастся
поставить крестик на любую угловую клетку. Доказать, что при любой игре второго
игрока первый всегда может выиграть.
|
|
Сложность: 3+ Классы: 8,9,10
|
Шестизначное число делится на 37 и имеет хотя бы две различные цифры. Его
первая и четвёртая цифры – не нули.
Докажите, что, переставив цифры в данном числе, можно получить другое число, тоже кратное 37 и не начинающееся с нуля.
Концы отрезка постоянной длины скользят по сторонам данного угла. Из середины
этого отрезка к нему восставлен перпендикуляр. Докажите, что отрезок
перпендикуляра от его начала до точки пересечения с биссектрисой угла имеет
постоянную длину.
|
|
Сложность: 3+ Классы: 10,11
|
X – число, большее 2. Некто пишет на карточках числа:
1, X, X², X³, X4, ..., Xk (каждое число только на одной карточке). Потом часть карточек он кладёт себе в правый карман, часть в левый, остальные выбрасывает. Докажите, что сумма чисел в правом кармане не может быть равна сумме чисел в левом.
Страница:
<< 116 117 118 119
120 121 122 >> [Всего задач: 1957]