ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Годы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Высоты AA1, CC1 остроугольного треугольника ABC пересекаются в точке H. Точка Q симметрична середине стороны AC относительно AA1. Точка P – середина отрезка A1C1. Докажите, что ∠QPH = 90°. Пусть a, b, c – стороны треугольника. Докажите неравенство a³ + b³ + 3abc > c³. Пусть AH – высота остроугольного треугольника ABC, а точки K и L – проекции H на стороны AB и AC. Описанная окружность Ω треугольника ABC пересекает прямую KL в точках P и Q, а прямую AH – в точках A и T. Докажите, что точка H является центром вписанной окружности треугольника PQT.
Можно ли расставить охрану вокруг точечного объекта так, чтобы ни
к объекту, ни к часовым нельзя было незаметно подкрасться? (Каждый часовой
стоит неподвижно и видит на 100 м строго вперёд.) При каких n > 3 правильный n-угольник можно разрезать диагоналями (возможно, пересекающимися внутри него) на равные треугольники? Петин счет в банке содержит 500 долларов. Банк разрешает совершать операции только двух видов: снимать 300 долларов или добавлять 198 долларов. ABC – равнобедренный прямоугольный треугольник. На продолжении гипотенузы AB за точку A взята точка D так, что AB = 2AD. Точки M и N на стороне AC таковы, что AM = NC. На продолжении стороны CB за точку B взята такая точка K, что CN = BK. Найдите угол между прямыми NK и DM. Назовём усложнением числа приписывание к нему одной цифры в начало, в конец или между любыми двумя его цифрами. Существует ли натуральное число, из которого невозможно получить полный квадрат с помощью ста усложнений? Известно, что корни уравнения x² + px + q = 0 – целые числа, а p и q – простые числа. Найдите p и q. В треугольнике ABC известны стороны BC = a, AC = b, AB = c и площадь S. Биссектрисы BL и AK пересекаются в точке O. Найдите площадь четырёхугольника CKOL. Докажите, что ни при каких натуральных значениях x и y число x8 – x7y + x6y² – ... – xy7 + y8 не является простым. На сторонах единичного квадрата отметили точки K, L, M и N так, что прямая KM параллельна двум сторонам квадрата, а прямая LN – двум другим сторонам квадрата. Отрезок KL отсекает от квадрата треугольник периметра 1. Треугольник какой площади отсекает от квадрата отрезок MN? Две окружности пересекаются в точках A и B. Через точку A проведена прямая, вторично пересекающая первую окружность в точке C, а вторую – в точке D. Пусть M и N – середины дуг BC и BD, не содержащих точку A, а K – середина отрезка CD. Докажите, что угол MKN прямой. (Можно считать, что точки C и D лежат по разные стороны от точки A.) За первый год население некоторой деревни возросло на n человек, а за второй – на 300 человек. При этом за первый год население увеличилось на 300%, а за второй – на n %. Сколько жителей стало в деревне? |
Страница: << 77 78 79 80 81 82 83 >> [Всего задач: 1957]
На сторонах единичного квадрата отметили точки K, L, M и N так, что прямая KM параллельна двум сторонам квадрата, а прямая LN – двум другим сторонам квадрата. Отрезок KL отсекает от квадрата треугольник периметра 1. Треугольник какой площади отсекает от квадрата отрезок MN?
На параболе y = x² выбраны четыре точки A, B, C, D так, что прямые AB и CD пересекаются на оси ординат.
За первый год население некоторой деревни возросло на n человек, а за второй – на 300 человек. При этом за первый год население увеличилось на 300%, а за второй – на n %. Сколько жителей стало в деревне?
Аудитория имеет форму правильного шестиугольника со стороной 3 м. В каждом углу установлен храпометр, определяющий число спящих студентов на расстоянии, не превышающем 3 м. Сколько всего спящих студентов в аудитории, если сумма показаний храпометров равна 7?
На едином экзамене 333 ученика допустили в общей сложности 1000 ошибок.
Страница: << 77 78 79 80 81 82 83 >> [Всего задач: 1957]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке