Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 19 задач
Версия для печати
Убрать все задачи

а) Аборигены поймали Кука и просят за его выкуп ровно 455 рупий 50 монетами. Смогут ли соратники Кука выкупить его на таких условиях, если в тех краях имеют хождение только монеты в 5, 17 и 31 рупии?
б) А если бы аборигены хотели получить сумму в 910 рупий 50 монетами по 10, 34 и 62 рупии?

Вниз   Решение


Петя и Витя ехали вниз по эскалатору. Посередине эскалатора хулиган Витя сорвал с Пети шапку и бросил её на встречный эскалатор. Пострадавший Петя побежал обратно вверх по эскалатору, чтобы затем спуститься вниз и вернуть шапку. Хитрый Витя побежал по эскалатору вниз, чтобы затем подняться вверх и успеть раньше Пети. Кто успеет раньше, если скорости ребят относительно эскалатора постоянны и не зависят от направления движения?

ВверхВниз   Решение


Существуют ли такие n-значные числа M и N, что все цифры M – чётные, все цифры N – нечётные, каждая цифра от 0 до 9 встречается в десятичной записи M или N хотя бы один раз и M делится на N?

ВверхВниз   Решение


Фигура на рисунке составлена из квадратов. Найдите сторону левого нижнего, если сторона самого маленького равна 1.

ВверхВниз   Решение


В трапеции ABCD стороны AD и BC параллельны, и  AB = BC = BD.  Высота BK пересекает диагональ AC в точке M. Найдите ∠CDM.

ВверхВниз   Решение


Расставьте скобки так, чтобы получилось верное равенство:

1 - 2 . 3 + 4 + 5 . 6 . 7 + 8 . 9 = 1995.

ВверхВниз   Решение



Числа от 1 до 9 разместите в кружках фигуры (см. рис.) так, чтобы сумма четырёх чисел, находящихся в кружках-вершинах всех квадратов (их шесть), была постоянной.

ВверхВниз   Решение


В стране n городов. Между каждыми двумя из них проложена либо автомобильная, либо железная дорога. Турист хочет объехать страну, побывав в каждом городе ровно один раз, и вернуться в город, с которого он начинал путешествие. Докажите, что турист может выбрать город, с которого он начнет путешествие, и маршрут так, что ему придётся поменять вид транспорта не более одного раза.

ВверхВниз   Решение


Разрежьте фигуру (по границам клеток) на три равные (одинаковые по форме и величине) части.

ВверхВниз   Решение


В параллелограмме ABCD точки M и N – середины сторон BC и CD соответственно. Могут ли лучи AM и AN делить угол BAD на три равные части?

ВверхВниз   Решение


На прямой через равные промежутки поставили десять точек, и они заняли отрезок длины a. На другой прямой через такие же промежутки поставили 100 точек, и они заняли отрезок длины b. Во сколько раз b больше a?

ВверхВниз   Решение


Докажите, что числа от 1 до 15 нельзя разбить на две группы: A из двух чисел и B из 13 чисел так, чтобы сумма чисел в группе B была равна произведению чисел в группе A.

ВверхВниз   Решение


В выпуклом пятиугольнике ABCDE:  ∠A = ∠C = 90°,  AB = AEBC = CDAC = 1.  Найдите площадь пятиугольника.

ВверхВниз   Решение


К натуральному числу A приписали справа три цифры. Получившееся число оказалось равным сумме всех натуральных чисел от 1 до A . Найдите A .

ВверхВниз   Решение


Отец с двумя сыновьями отправились навестить бабушку, которая живёт в 33 км от города. У отца есть мотороллер, скорость которого 25 км/ч, а с пассажиром – 20 км/ч (двух пассажиров на мотороллере перевозить нельзя). Каждый из братьев идёт по дороге со скоростью 5 км/ч. Докажите, что все трое могут добраться до бабушки за 3 часа.

ВверхВниз   Решение


a) Придумайте три правильные несократимые дроби, сумма которых – целое число, а если каждую из этих дробей "перевернуть" (то есть заменить на обратную), то сумма полученных дробей тоже будет целым числом.
б) То же, но числители дробей – не равные друг другу натуральные числа.

ВверхВниз   Решение


Автор: Фольклор

Верно ли, что центр вписанной окружности треугольника лежит внутри треугольника, образованного средними линиями данного?

ВверхВниз   Решение


Кузнечик прыгает вдоль прямой вперёд на 80 см или назад на 50 см. Может ли он менее чем за 7 прыжков удалиться от начальной точки ровно на 1 м 70 см?

ВверхВниз   Решение


Дан равносторонний треугольник ABC и прямая l, проходящая через его центр. Точки пересечения этой прямой со сторонами AB и BC отразили относительно середин этих сторон соответственно. Докажите, что прямая, проходящая через получившиеся точки, касается вписанной окружности треугольника ABC.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 110017  (#99.4.10.1)

Темы:   [ Десятичная система счисления ]
[ Ребусы ]
[ Арифметическая прогрессия ]
Сложность: 4-
Классы: 8,9

К натуральному числу A приписали справа три цифры. Получившееся число оказалось равным сумме всех натуральных чисел от 1 до A . Найдите A .
Прислать комментарий     Решение


Задача 108242  (#99.4.10.2)

Темы:   [ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Вспомогательная окружность ]
[ Три точки, лежащие на одной прямой ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 4-
Классы: 8,9

На плоскости дана окружность ω, точка A, лежащая внутри ω, и точка B, отличная от A. Рассматриваются всевозможные хорды XY, проходящие через точку A. Докажите, что центры описанных окружностей треугольников BXY лежат на одной прямой.

Прислать комментарий     Решение

Задача 110004  (#99.4.10.3)

Темы:   [ Системы точек ]
[ Прямые и плоскости в пространстве (прочее) ]
[ Объединение, пересечение и разность множеств ]
Сложность: 4+
Классы: 10,11

В пространстве даны n точек общего положения (никакие три не лежат на одной прямой, никакие четыре не лежат в одной плоскости). Через каждые три из них проведена плоскость. Докажите, что какие бы n-3 точки в пространстве ни взять, найдется плоскость из проведенных, не содержащая ни одной из этих n-3 точек.
Прислать комментарий     Решение


Задача 110012  (#99.4.10.4)

Темы:   [ Процессы и операции ]
[ Доказательство от противного ]
Сложность: 4
Классы: 8,9,10

Автор: Антонов М.

Лабиринт представляет собой квадрат 8×8, в каждой клетке 1×1 которого нарисована одна из четырёх стрелок (вверх, вниз, вправо, влево). Верхняя сторона правой верхней клетки – выход из лабиринта. В левой нижней клетке находится фишка, которая каждым своим ходом перемещается на одну клетку в направлении, указанном стрелкой. После каждого хода стрелка в клетке, в которой только что была фишка, поворачивается на 90° по часовой стрелке. Если фишка должна сделать ход, выводящий ее за пределы квадрата 8×8, она остается на месте, а стрелка также поворачивается на 90° по часовой стрелке. Докажите, что рано или поздно фишка выйдет из лабиринта.

Прислать комментарий     Решение

Задача 110005  (#99.4.10.5)

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Делимость чисел. Общие свойства ]
[ Арифметические действия. Числовые тождества ]
Сложность: 3+
Классы: 8,9,10

Существуют ли 10 таких различных целых чисел, что все суммы, составленные из девяти из них – точные квадраты?

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .