Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

Может ли сумма тангенсов углов одного треугольника равняться сумме тангенсов углов другого, если один из этих треугольников остроугольный, а другой тупоугольный?

Вниз   Решение


Докажите, что уравнение  1/x1/y = 1/n  имеет единственное решение в натуральных числах тогда и только тогда, когда n – простое число.

ВверхВниз   Решение


Бумажная лента постоянной ширины завязана простым узлом и затем стянута так, чтобы узел стал плоским (см. рис.).
Докажите, что узел имеет форму правильного пятиугольника.

ВверхВниз   Решение


Решите уравнение  x² – 5y² = 1  в целых числах.

ВверхВниз   Решение


Можно ли намотать нерастяжимую ленту на бесконечный конус так, чгобы сделать вокруг его оси бесконечно много оборотов? Ленту нельзя наматывать на вершину конуса, а также разрезать и перекручивать. При необходимости можно считать, что она бесконечна, а угол между осью и образующей конуса достаточно мал.

ВверхВниз   Решение


Контуры выпуклых многоугольников F и G не имеют общих точек, причём G расположен внутри F. Хорду многоугольника F – отрезок, соединяющий две точки контура F, назовём опорной для G, если она пересекается с G только по точкам контура: содержит либо только вершину, либо сторону G.
  а) Докажите, что найдётся опорная хорда, середина которой принадлежит контуру G.
  б) Докажите, что найдутся две такие хорды.

ВверхВниз   Решение


Докажите, что разность числа, имеющего нечётное количество цифр, и числа, записанного теми же цифрами, но в обратном порядке, делится на 99.

ВверхВниз   Решение


Из книги выпал кусок, первая страница которого имеет номер 439, а номер последней записывается теми же цифрами в каком-то другом порядке. Сколько страниц в выпавшем куске?

ВверхВниз   Решение


Автор: Нилов Ф.

Вписанная окружность треугольника ABC касается его сторон в точках A', B' и C'. Известно, что ортоцентры треугольников ABC и A'B'C' совпадают. Верно ли, что треугольник ABC – правильный?

ВверхВниз   Решение


В каждый из углов треугольника ABC вписано по окружности. Из одной вершины окружности, вписанные в два других угла, видны под равными углами. Из другой – тоже. Докажите, что тогда и из третьей вершины две окружности видны под равными углами.

ВверхВниз   Решение


В остроугольном треугольнике ABC высоты AA1, BB1 и CC1 пересекаются в точке H. Из точки H провели перпендикуляры к прямым B1C1 и A1C1, которые пересекли лучи CA и CB в точках P и Q соответственно. Докажите, что перпендикуляр, опущенный из точки C на прямую A1B1, проходит через середину отрезка PQ.

Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 47]      



Задача 64402  (#10.2)

Темы:   [ Описанные четырехугольники ]
[ Неравенства для элементов треугольника (прочее) ]
[ Теорема косинусов ]
[ Доказательство от противного ]
Сложность: 3+

В описанном четырёхугольнике ABCD  AB = CD ≠ BC.  Диагонали четырёхугольника пересекаются в точке L. Докажите, что угол ALB острый.

Прислать комментарий     Решение

Задача 64403  (#10.3)

Темы:   [ Три прямые, пересекающиеся в одной точке ]
[ Вписанные и описанные окружности ]
[ Отношение, в котором биссектриса делит сторону ]
[ Выход в пространство ]
[ Окружность Аполлония ]
[ Теоремы Чевы и Менелая ]
[ Теорема синусов ]
Сложность: 4+

Пусть X – такая точка внутри треугольника ABC, что  XA·BC = XB·AC = XC·ABI1, I2, I3 – центры вписанных окружностей треугольников XBC, XCA и XAB соответственно. Докажите, что прямые AI1, BI2 и CI3 пересекаются в одной точке.

Прислать комментарий     Решение

Задача 64404  (#10.4)

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Длины сторон, высот, медиан и биссектрис ]
[ Многоугольники и многогранники с вершинами в узлах решетки ]
Сложность: 5

Автор: Белухов Н.

Дан бумажный треугольник, площадь которого равна ½, а квадраты всех сторон – целые числа.
Докажите, что в него можно завернуть квадрат с площадью ¼ (треугольник можно сгибать, но нельзя резать).

Прислать комментарий     Решение

Задача 64405  (#10.5)

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Три точки, лежащие на одной прямой ]
[ Величина угла между двумя хордами и двумя секущими ]
Сложность: 3+

Четырёхугольник ABCD вписан в окружность с центром в точке O. Точки E и F – середины не содержащих других вершин дуг AB и CD соответственно. Прямые, проходящие через точки E и F параллельно диагоналям четырёхугольника ABCD, пересекаются в точках K и L. Докажите, что прямая KL содержит точку O.

Прислать комментарий     Решение

Задача 64406  (#10.6)

Темы:   [ Ортоцентр и ортотреугольник ]
[ Гомотетия помогает решить задачу ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Средняя линия трапеции ]
[ Вписанные четырехугольники (прочее) ]
[ Точка Лемуана ]
Сложность: 4

В остроугольном треугольнике ABC высоты AA1, BB1 и CC1 пересекаются в точке H. Из точки H провели перпендикуляры к прямым B1C1 и A1C1, которые пересекли лучи CA и CB в точках P и Q соответственно. Докажите, что перпендикуляр, опущенный из точки C на прямую A1B1, проходит через середину отрезка PQ.

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 47]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .