Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
год/номер:
Фильтр
Сложность с по   Класс с по  
Выбрано 13 задач
Версия для печати
Убрать все задачи

Автор: Mudgal A.

Петя и Вася играют в такую игру. Сначала Петя задумывает некоторый многочлен P(x) с целыми коэффициентами. Далее делается несколько ходов. За ход Вася платит Пете рубль и называет любое целое число a по своему выбору, которое он ещё не называл, а Петя в ответ говорит, сколько решений в целых числах имеет уравнение  P(x) = a.  Вася выигрывает, как только Петя два раза (не обязательно подряд) назвал одно и то же число. Какого наименьшего числа рублей хватит Васе, чтобы гарантированно выиграть?

Вниз   Решение


Даны два треугольника ABC и A1B1C1. Перпендикуляры, опущенные из точек A, B, C на прямые B1C1, C1A1, A1B1 пересекаются в одной точке. Докажите, что тогда перпендикуляры, опущенные из точек A1, B1, C1 на прямые BC, CA, AB тоже пересекаются в одной точке (Штейнер).

ВверхВниз   Решение


Докажите, что число, имеющее нечётное число делителей, является точным квадратом.

ВверхВниз   Решение


Решите неравенство:
|x + 2000| < |x - 2001|.

ВверхВниз   Решение


Найдите все натуральные  n > 1,  для которых  n³ – 3  делится на  n – 1.

ВверхВниз   Решение


Все рёбра треугольной пирамиды равны a. Найти наибольшую площадь, которую может иметь ортогональная проекция этой пирамиды на плоскость.

ВверхВниз   Решение


а) Стороны угла с вершиной C касаются окружности в точках A и B. Из точки P, лежащей на окружности, опущены перпендикуляры PA1, PB1 и PC1 на прямые BC, CA и AB. Докажите, что  PC12 = PA1 . PB1 и PA1 : PB1 = PB2 : PA2.
б) Из произвольной точки O вписанной окружности треугольника ABC опущены перпендикуляры  OA', OB', OC' на стороны треугольника ABC и перпендикуляры  OA'', OB'', OC'' на стороны треугольника с вершинами в точках касания. Докажите, что  OA' . OB' . OC' = OA'' . OB'' . OC''.

ВверхВниз   Решение


На сколько частей разделяют n-угольник его диагонали, если никакие три диагонали не пересекаются в одной точке?

ВверхВниз   Решение


Автор: Креков Д.

Дан остроугольный треугольник ABC. Пусть A' – точка, симметричная A относительно BC, OA – центр окружности, проходящей через A и середины отрезков A'B и A'C. Точки OB и OC определяются аналогично. Найдите отношение радиусов описанных окружностей треугольников ABC и OAOBOC.

ВверхВниз   Решение


В прямоугольном параллелепипеде АВСDA'B'C'D'  АВ = ВС = а,  AA' = b.  Его ортогонально спроектировали на некоторую плоскость, содержащую ребро CD. Найдите наибольшее значение площади проекции.

ВверхВниз   Решение


а) Точки P1 и P2 изогонально сопряжены относительно треугольника ABC. Докажите, что их подерные окружности (описанные окружности подерных треугольников (см. задачу 5.99)) совпадают, причем центром этой окружности является середина отрезка P1P2.
б) Докажите, что это утверждение останется верным, если из точек P1 и P2 проводить не перпендикуляры к сторонам, а прямые под данным (ориентированным) углом.
в) Докажите, что стороны подерного треугольника точки P1 перпендикулярны прямым, соединяющим точку P2 с вершинами треугольника ABC.

ВверхВниз   Решение


Миша сложил из восьми брусков куб (см. рис.). Все бруски имеют один и тот же объём, серые бруски одинаковые и белые бруски тоже одинаковые. Какую часть ребра куба составляют длина, ширина и высота белого бруска?

ВверхВниз   Решение


В очереди под дождём стояли 11 человек, каждый держал зонтик. Они стояли вплотную, то есть зонтики соседей соприкасались (см. рис).

Дождь закончился, люди закрыли зонтики и встали, соблюдая дистанцию в 50 см между соседями. Во сколько раз уменьшилась длина очереди? Людей можно считать точками, а зонтики — кругами радиуса 50 см.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 363]      



Задача 32062

Темы:   [ Процессы и операции ]
[ Разбиения на пары и группы; биекции ]
Сложность: 2
Классы: 7,8,9

В компании из k человек (k > 3) у каждого появилась новость, известная ему одному. За один телефонный разговор двое сообщают друг другу все известные им новости. Докажите, что за 2k – 4 разговора все они могут узнать все новости.

Прислать комментарий     Решение


Задача 32092

Темы:   [ Числовые таблицы и их свойства ]
[ Подсчет двумя способами ]
Сложность: 2
Классы: 5,6,7

В каждой клетке прямоугольной таблицы размером M×K написано число. Сумма чисел в каждой строке и в каждом столбце равна 1.
Докажите, что  M = K.

Прислать комментарий     Решение

Задача 66618

Тема:   [ Лингвистика ]
Сложность: 2
Классы: 5,6,7

Впишите в следующее предложение какое-нибудь числительное (не цифрами, а словом или словами), чтобы предложение было верным.

В этом предложении ______________________ гласных букв.

Прислать комментарий     Решение

Задача 66633

Тема:   [ Текстовые задачи (прочее) ]
Сложность: 2
Классы: 5,6,7

У Гриши есть 5000 рублей. В магазине продаются шоколадные зайцы по цене 45 рублей за штуку. Чтобы отнести зайцев домой, Грише придется купить ещё несколько сумок по 30 рублей за штуку. В одну сумку помещается не более 30 шоколадных зайцев. Гриша купил наибольшее возможное количество зайцев и достаточное количество сумок, чтобы донести в них всех зайцев. Сколько денег осталось у Гриши?
Прислать комментарий     Решение


Задача 67134

Тема:   [ Арифметика. Устный счет и т.п. ]
Сложность: 2
Классы: 5,6,7,8

В очереди под дождём стояли 11 человек, каждый держал зонтик. Они стояли вплотную, то есть зонтики соседей соприкасались (см. рис).

Дождь закончился, люди закрыли зонтики и встали, соблюдая дистанцию в 50 см между соседями. Во сколько раз уменьшилась длина очереди? Людей можно считать точками, а зонтики — кругами радиуса 50 см.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 363]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .