Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 14 задач
Версия для печати
Убрать все задачи

Четырёхугольник ABCD вписан в окружность Ω с центром O, причём O не лежит на диагоналях четырёхугольника. Описанная окружность Ω1 треугольника AOC проходит через середину диагонали BD. Докажите, что описанная окружность Ω2 треугольника BOD проходит через середину диагонали AC.

Вниз   Решение


В ряд стоят $9$ вертикальных столбиков. В некоторых местах между соседними столбиками вставлены горизонтальные палочки, никакие две из которых не находятся на одной высоте. Жук ползёт снизу вверх; когда он встречает палочку, он переползает по ней на соседний столбик и продолжает ползти вверх. Известно, что если жук начинает внизу первого столбика, то он закончит свой путь на девятом столбике. Всегда ли можно убрать одну из палочек так, чтобы жук в конце пути оказался наверху пятого столбика?

Например, если палочки расположены как на рисунке, то жук будет ползти по сплошной линии. Если убрать третью палочку на пути жука, то он поползёт по пунктирной линии.

ВверхВниз   Решение


Однажды барон Мюнхгаузен, вернувшись с прогулки, рассказал, что половину пути он шёл со скоростью 5 км/ч, а половину времени, затраченного на прогулку, – со скоростью 6 км/ч. Не ошибся ли барон?

ВверхВниз   Решение


Дано уравнение  xn – a1xn–1a2xn–2 – ... – an–1x – an = 0,  где  a1 ≥ 0,  a2 ≥ 0,  an ≥ 0.
Доказать, что это уравнение не может иметь двух положительных корней.

ВверхВниз   Решение


а) Докажите, что расстояния от любой точки параболы до фокуса и до директрисы равны.
б) Докажите, что множество точек, для которых расстояния до некоторой фиксированной точки и до некоторой фиксированной прямой равны, является параболой.

ВверхВниз   Решение


Пусть f(x) – многочлен степени n с корнями α1, ..., αn. Определим многоугольник M как выпуклую оболочку точек α1, ..., αn на комплексной плоскости. Докажите, что корни производной этого многочлена лежат внутри многоугольника M.

ВверхВниз   Решение


При каких p и q двучлен  x4 + 1  делится на  x² + px + q?

ВверхВниз   Решение


На плоскости дано  n > 4  точек, никакие три из которых не лежат на одной прямой.
Докажите, что существует не менее    различных выпуклых четырёхугольников с вершинами в этих точках.

ВверхВниз   Решение


В поход пошли 20 туристов. Самому старшему из них 35 лет, а самому младшему 20 лет. Верно ли, что среди туристов есть одногодки?

ВверхВниз   Решение


Автор: Пешнин А.

Учительница продиктовала Вовочке угловые коэффициенты и свободные члены трёх разных линейных функций, графики которых параллельны. Невнимательный Вовочка при записи каждой из функций поменял местами угловой коэффициент и свободный член и построил графики получившихся функций. Сколько могло получиться точек, через которые проходят хотя бы два графика?

ВверхВниз   Решение


В треугольнике ABC точка E — середина стороны BC, точка D лежит на стороне AC, AC = 1, $ \angle$BAC = 60o, $ \angle$ABC = 100o, $ \angle$ACB = 20o и  $ \angle$DEC = 80o (рис.). Чему равна сумма площади треугольника ABC и удвоенной площади треугольника CDE?


ВверхВниз   Решение


Известно, что выражение  14x + 13y  делится на 11 при некоторых целых x и y. Докажите, что  19x + 9y  также делится на 11 при таких x и y.

ВверхВниз   Решение


Автор: Якубов А.

Прямая, проходящая через центр I вписанной окружности треугольника ABC, перпендикулярна AI и пересекает стороны AB и AC в точках C' и B' соответственно. В треугольниках BC'I и CB'I провели высоты C'C1 и B'B1 соответственно. Докажите, что середина отрезка B1C1 лежит на прямой, проходящей через точку I и перпендикулярной BC.

ВверхВниз   Решение


На боковых сторонах $AB$ и $BC$ равнобедренного остроугольного треугольника $ABC$ выбраны точки $M$ и $K$. Отрезки $CM$ и $AK$ пересекаются в точке $E$. Оказалось, что $\angle MEA = \angle ABC$. Докажите, что середины всевозможных отрезков $MK$ лежат на одной прямой.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 >> [Всего задач: 29]      



Задача 67300  (#1)

Темы:   [ Графики и ГМТ на координатной плоскости ]
[ Системы линейных уравнений ]
Сложность: 3
Классы: 7,8,9,10,11

Автор: Пешнин А.

Учительница продиктовала Вовочке угловые коэффициенты и свободные члены трёх разных линейных функций, графики которых параллельны. Невнимательный Вовочка при записи каждой из функций поменял местами угловой коэффициент и свободный член и построил графики получившихся функций. Сколько могло получиться точек, через которые проходят хотя бы два графика?
Прислать комментарий     Решение


Задача 67301  (#2)

Темы:   [ Сочетания и размещения ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 6,7,8,9

На урок физкультуры пришло $12$ детей, все разной силы. Учитель $10$ раз делил их на две команды по $6$ человек, каждый раз новым способом, и проводил состязание по перетягиванию каната. Могло ли оказаться так, что все $10$ раз состязание закончилось вничью (то есть суммы сил детей в командах были равны)?
Прислать комментарий     Решение


Задача 67302  (#3)

Темы:   [ Системы отрезков, прямых и окружностей ]
[ Принцип крайнего (прочее) ]
Сложность: 3+
Классы: 7,8,9,10,11

Плоскость разбита на части несколькими прямыми, среди которых есть непараллельные. Те части, граница которых состоит из двух лучей, закрасили. После этого проведена ещё одна прямая. Докажите, что, независимо от положения новой прямой, по обе стороны от неё найдутся закрашенные точки.

Пример расположения прямых (без последней прямой) изображен на рисунке.
Прислать комментарий     Решение

Задача 67303  (#4)

Темы:   [ Вспомогательные равные треугольники ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Теоремы Чевы и Менелая ]
[ Вспомогательные подобные треугольники ]
Сложность: 4
Классы: 8,9,10,11

На боковых сторонах $AB$ и $BC$ равнобедренного остроугольного треугольника $ABC$ выбраны точки $M$ и $K$. Отрезки $CM$ и $AK$ пересекаются в точке $E$. Оказалось, что $\angle MEA = \angle ABC$. Докажите, что середины всевозможных отрезков $MK$ лежат на одной прямой.
Прислать комментарий     Решение


Задача 67304  (#5)

Темы:   [ Соображения непрерывности ]
[ Принцип крайнего (прочее) ]
Сложность: 4
Классы: 7,8,9,10,11

В ряд стоят $9$ вертикальных столбиков. В некоторых местах между соседними столбиками вставлены горизонтальные палочки, никакие две из которых не находятся на одной высоте. Жук ползёт снизу вверх; когда он встречает палочку, он переползает по ней на соседний столбик и продолжает ползти вверх. Известно, что если жук начинает внизу первого столбика, то он закончит свой путь на девятом столбике. Всегда ли можно убрать одну из палочек так, чтобы жук в конце пути оказался наверху пятого столбика?

Например, если палочки расположены как на рисунке, то жук будет ползти по сплошной линии. Если убрать третью палочку на пути жука, то он поползёт по пунктирной линии.
Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 >> [Всего задач: 29]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .