Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Годы:
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

В одной вершине куба написано число 1, а в остальных – нули. Можно прибавлять по единице к числам в концах любого ребра.
Можно ли добиться, чтобы все числа делились  а) на 2;  б) на 3?

Вниз   Решение


Найдите все трехзначные числа, каждая натуральная степень которых оканчивается на три цифры, составляющие первоначальное число.

ВверхВниз   Решение


Точка O является точкой пересечения высот остроугольного треугольника ABC. Докажите, что 3 окружности, проходящие: первая через точки O, A, B, вторая — через точки O, B, C и третья — через точки O, C, A, равны между собой.

Вверх   Решение

Задачи

Страница: << 157 158 159 160 161 162 163 >> [Всего задач: 1982]      



Задача 76422

Тема:   [ Тетраэдр (прочее) ]
Сложность: 3+
Классы: 10,11

Высота усечённого конуса равна радиусу его большего основания; периметр правильного шестиугольника, описанного около меньшего основания, равен периметру равностороннего треугольника, вписанного в большее основание. Определить угол наклона образующей конуса к плоскости основания.
Прислать комментарий     Решение


Задача 76425

Темы:   [ Тетраэдр (прочее) ]
[ Свойства разверток ]
Сложность: 3+
Классы: 10,11

Развертка боковой поверхности конуса представляет сектор с углом в 120o; в конус вписана треугольная пирамида, углы основания которой составляют арифметическую прогрессию с разностью 15o. Определить угол наклона к плоскости основания наименьшей из боковых граней.
Прислать комментарий     Решение


Задача 76427

Тема:   [ Задачи на максимум и минимум (прочее) ]
Сложность: 3+
Классы: 10,11

На поверхности куба найти точки, из которых диагональ видна под наименьшим углом. Доказать, что из остальных точек поверхности куба диагональ видна под большим углом, чем из найденных.
Прислать комментарий     Решение


Задача 76430

Темы:   [ Системы алгебраических нелинейных уравнений ]
[ Квадратные уравнения. Теорема Виета ]
Сложность: 3+
Классы: 9,10

Решить систему уравнений:
   x³ – y³ = 26,
   x²y – xy² = 6.

Прислать комментарий     Решение

Задача 76446

Темы:   [ Векторы (прочее) ]
[ Центральная симметрия (прочее) ]
Сложность: 3+
Классы: 8,9

В пространстве даны точки O1, O2, O3 и точка A. Точка A симметрично отражается относительно точки O1, полученная точка A1 -- относительно O2, полученная точка A2 — относительно O3. Получаем некоторую точку A3, которую также последовательно отражаем относительно O1, O2, O3. Доказать, что полученная точка совпадает с A.
Прислать комментарий     Решение


Страница: << 157 158 159 160 161 162 163 >> [Всего задач: 1982]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .