ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Годы:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В кубе, ребро которого равно 13, выбрано 1956 точек. Можно ли в этот куб поместить кубик с ребром 1 так, чтобы внутри него не было ни одной выбранной точки?

   Решение

Задачи

Страница: << 186 187 188 189 190 191 192 >> [Всего задач: 1957]      



Задача 77972

Темы:   [ Квадратные корни (прочее) ]
[ Иррациональные неравенства ]
[ Индукция (прочее) ]
Сложность: 4-
Классы: 8,9,10

Доказать неравенство

$\displaystyle {\frac{2-\overbrace{\sqrt{2+\sqrt{2+\dots+\sqrt{2}}}}^{n{\rm раз}}}{2-\underbrace{\sqrt{2+\sqrt{2+\dots+\sqrt{2}}}}_{n-1{\rm раз}}}}$ > $\displaystyle {\textstyle\frac{1}{4}}$.

Прислать комментарий     Решение

Задача 78086

Темы:   [ Куб ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 4-
Классы: 8,9,10

В кубе, ребро которого равно 13, выбрано 1956 точек. Можно ли в этот куб поместить кубик с ребром 1 так, чтобы внутри него не было ни одной выбранной точки?
Прислать комментарий     Решение


Задача 78139

Темы:   [ Неравенства с площадями ]
[ Ортогональная (прямоугольная) проекция ]
Сложность: 4-
Классы: 9,10,11

Проекции многоугольника на ось OX, биссектрису 1-го и 3-го координатных углов, ось OY и биссектрису 2-го и 4-го координатных углов равны соответственно 4, 3$ \sqrt{2}$, 5, 4$ \sqrt{2}$. Площадь многоугольника — S. Доказать, что S$ \le$17, 5.
Прислать комментарий     Решение


Задача 78207

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Конкуррентность высот. Углы между высотами. ]
Сложность: 4-
Классы: 8,9

M и N — точки пересечения двух окружностей с центрами O1 и O2. Прямая O1M пересекает 1-ю окружность в точке A1, а 2-ю в точке A2. Прямая O2M пересекает 1-ю окружность в точке B1, а 2-ю в точке B2. Доказать, что прямые A1B1, A2B2 и MN пересекаются в одной точке.
Прислать комментарий     Решение


Задача 78240

Темы:   [ Индукция в геометрии ]
[ Выпуклые многоугольники ]
Сложность: 4-
Классы: 8,9,10

Дан остроугольный треугольник A0B0C0. Пусть точки A1, B1, C1 — центры квадратов, построенных на сторонах B0C0, C0A0, A0B0. С треугольником A1B1C1 делаем то же самое. Получаем треугольник A2B2C2 и т.д. Доказать, что $ \Delta$An + 1Bn + 1Cn + 1 пересекает $ \Delta$AnBnCn ровно в 6 точках.
Прислать комментарий     Решение


Страница: << 186 187 188 189 190 191 192 >> [Всего задач: 1957]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .