Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Годы:
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Катеты AC и CB прямоугольного треугольника ABC равны 15 и 8 соответственно. Из центра C радиусом CB описана дуга, отсекающая от гипотенузы часть BD. Найдите BD.

Вниз   Решение


В клетках шахматной доски размером n×n расставлены числа: на пересечении k-й строки и m-го столбца стоит число akm. При любой расстановке на этой доске n ладей, при которой никакие две из них не бьют друг друга, сумма закрытых чисел равна 1972. Доказать, что существует два таких набора чисел x1, x2, ..., xn и y1, ..., yn, что при всех k и m выполняется равенство  akm = xk + ym.

ВверхВниз   Решение


Две окружности касаются внешним образом. Найдите длину их общей внешней касательной (между точками касания), если радиусы равны 16 и 25.

ВверхВниз   Решение


На сторонах треугольника ABC вне его построены правильные треугольники ABC1, BCA1 и CAB1. Доказать, что $ \overrightarrow{AA_1}$ + $ \overrightarrow{BB_1}$ + $ \overrightarrow{CC_1}$ = $ \overrightarrow{0}$.

ВверхВниз   Решение


В прямоугольный треугольник с гипотенузой, равной 26, вписана окружность радиуса 4. Найдите периметр треугольника.

ВверхВниз   Решение


На поверхности кубика мелом отмечено 100 различных точек. Докажите, что можно двумя различными способами поставить кубик на чёрный стол (причём в точности на одно и то же место) так, чтобы отпечатки от мела на столе при этих способах были разными. (Если точка отмечена на ребре или в вершине, она тоже даёт отпечаток.)

Вверх   Решение

Задачи

Страница: << 119 120 121 122 123 124 125 >> [Всего задач: 1982]      



Задача 78586

Темы:   [ НОД и НОК. Взаимная простота ]
[ Десятичная система счисления ]
[ Деление с остатком ]
Сложность: 3+
Классы: 8,9

Найти все такие двузначные числа , что при умножении на некоторое целое число получается число, предпоследняя цифра которого – 5.

Прислать комментарий     Решение


Задача 78592

Тема:   [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 3+
Классы: 9,10,11

Какое максимальное число дамок можно поставить на чёрных полях шахматной доски размером 8×8 так, чтобы каждую дамку била хотя бы одна из остальных?

Прислать комментарий     Решение

Задача 78615

Темы:   [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Принцип Дирихле (углы и длины) ]
[ Покрытия ]
[ Круг, сектор, сегмент и проч. ]
Сложность: 3+
Классы: 8,9,10

Над квадратным катком нужно повесить четыре лампы так, чтобы они его полностью освещали. На какой наименьшей высоте нужно повесить лампы, если каждая лампа освещает круг радиуса, равного высоте, на которой она висит?
Прислать комментарий     Решение


Задача 78617

Темы:   [ Десятичная система счисления ]
[ Разбиения на пары и группы; биекции ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 8,9

Число y получается из натурального числа x некоторой перестановкой его цифр. Докажите, что каково бы ни было x,  

Прислать комментарий     Решение

Задача 78620

Тема:   [ Теорема Пифагора (прямая и обратная) ]
Сложность: 3+
Классы: 9,10

На каждой стороне прямоугольного треугольника построено по квадрату (пифагоровы штаны), и вся фигура вписана в круг. Для каких прямоугольных треугольников это можно сделать?
Прислать комментарий     Решение


Страница: << 119 120 121 122 123 124 125 >> [Всего задач: 1982]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .