Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Годы:
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Дан треугольник ABC, AD и BE — его биссектрисы. Известно, что AC > BC. Доказать, что AE > DE > BD.

Вниз   Решение


На боковых сторонах AB и AC равнобедренного треугольника ABC построены вне его равные треугольники AMB и ANC  (AM = AN).
Докажите, что точки M и N симметричны относительно биссектрисы угла BAC.

ВверхВниз   Решение


Радиус окружности равен 13, хорда равна 10. Найдите её расстояние от центра.

ВверхВниз   Решение


В круге с центром O проведена хорда AB. Вычислите площадь получившегося сегмента, если  ∠AOB = α,  а радиус круга равен r.

ВверхВниз   Решение


Равнобедренный треугольник ABC с основанием BC повернули вокруг точки C так, что его вершина A оказалась в точке A1 на прямой BC. При этом вершина B перешла в некоторую точку B1, лежащую с точкой A по одну сторону от прямой BC. Докажите, что прямые AB и B1C параллельны.

ВверхВниз   Решение


К окружности радиуса 36 проведена касательная из точки, удаленной от центра на расстояние, равное 85. Найдите длину касательной.

ВверхВниз   Решение


Расстояние от точки M до центра O окружности равно диаметру этой окружности. Через точку M проведены две прямые, касающиеся окружности в точках A и B. Найдите углы треугольника AOB.

ВверхВниз   Решение


На шахматной доске размером 8×8 отмечены 64 точки — центры всех клеток. Можно ли отделить все точки друг от друга, проведя 13 прямых, не проходящих через эти точки?

Вверх   Решение

Задачи

Страница: << 174 175 176 177 178 179 180 >> [Всего задач: 1957]      



Задача 79289

Тема:   [ Неравенства для элементов треугольника (прочее) ]
Сложность: 3+
Классы: 9,10

Дан треугольник ABC, AD и BE — его биссектрисы. Известно, что AC > BC. Доказать, что AE > DE > BD.
Прислать комментарий     Решение


Задача 79297

Темы:   [ Разные задачи на разрезания ]
[ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Геометрия на клетчатой бумаге ]
Сложность: 3+
Классы: 8,9,10

На шахматной доске размером 8×8 отмечены 64 точки — центры всех клеток. Можно ли отделить все точки друг от друга, проведя 13 прямых, не проходящих через эти точки?
Прислать комментарий     Решение


Задача 79312

Темы:   [ Неравенства с площадями ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 11

В остроугольном треугольнике ABC проведены медиана AM, биссектриса BK и высота CH. Пусть M'K'H' — треугольник с вершинами в точках пересечения трёх проведённых отрезков. Может ли площадь полученного треугольника быть больше 0,499 площади треугольника ABC?
Прислать комментарий     Решение


Задача 79318

Темы:   [ Десятичная система счисления ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8

Существует ли такое натуральное число n, что сумма цифр числа n2 равна 100?
Прислать комментарий     Решение


Задача 79329

Темы:   [ Многогранники и пространственные многоугольники ]
[ Векторы (прочее) ]
[ Проектирование помогает решить задачу ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 11

Существует ли такой выпуклый 1976-гранник, который обладал бы следующим свойством: при произвольной расстановке стрелок на концах его рёбер сумма полученных векторов отлична от 0?
Прислать комментарий     Решение


Страница: << 174 175 176 177 178 179 180 >> [Всего задач: 1957]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .