Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Годы:
Фильтр
Сложность с по   Класс с по  
Выбрано 14 задач
Версия для печати
Убрать все задачи

Выпуклый многоугольник имеет центр симметрии. Докажите, что сумма его углов делится на 360°.

Вниз   Решение


Через середину M стороны BC параллелограмма ABCD, площадь которого равна 1, и вершину A проведена прямая, пересекающая диагональ BD в точке O. Найдите площадь четырёхугольника OMCD.

ВверхВниз   Решение


Докажите, что у равнобедренного треугольника высота, опущенная на основание, является медианой и биссектрисой.

ВверхВниз   Решение


На хорде AB окружности K с центром в точке O взята точка C. D — вторая точка пересечения окружности K с окружностью, описанной около $ \Delta$ACO. Доказать, что CD = CB.

ВверхВниз   Решение


Выбрать 100 чисел, удовлетворяющих условиям  x1 = 1,  0 ≤ x1 ≤ 2x1,  0 ≤ x3 ≤ 2x2,  ...,  0 ≤ x99 ≤ 2x98,  0 ≤ x100 ≤ 2x99, так, чтобы выражение
x1x2 + x3x4 + ... + x99x100  было максимально.

ВверхВниз   Решение


Радиусы двух окружностей равны 27 и 13, а расстояние между центрами равно 50. Найдите длины их общих касательных.

ВверхВниз   Решение


Докажите, что при повороте окружность переходит в окружность.

ВверхВниз   Решение


На шахматной доске 20×20 стоят 10 ладей и один король. Король не стоит под шахом и идёт из левого угла в правый верхний по диагонали. Ходят по очереди: сначала король, потом одна из ладей. Доказать, что при любом начальном расположении ладей и любом способе маневрирования ими король попадёт под шах.

ВверхВниз   Решение


Сторона основания и высота правильной четырёхугольной пирамиды равны a . Найдите радиус вписанного шара.

ВверхВниз   Решение


Внутри треугольника ABC взята точка M. Докажите, что угол BMC больше угла BAC.

ВверхВниз   Решение


В треугольнике ABC проведены биссектрисы CF и AD. Найдите отношение  SAFD : SABC,  если  AB : AC : BC = 21 : 28 : 20.

ВверхВниз   Решение


В равнобедренном треугольнике ABC с основанием AC и углом при вершине B, равным 36°, проведена биссектриса AD.
Докажите, что треугольники CDA и ADB равнобедренные.

ВверхВниз   Решение


Известно, что при пересечении прямых a и b третьей прямой образовалось 8 углов. Четыре из этих углов равны 80°, а четыре других равны 100°.
Следует ли из этого, что прямые a и b параллельны?

ВверхВниз   Решение


Можно ли на плоскости расположить бесконечное множество одинаковых кругов так, чтобы любая прямая пересекала не более двух кругов?

Вверх   Решение

Задачи

Страница: << 175 176 177 178 179 180 181 >> [Всего задач: 1982]      



Задача 78781

Тема:   [ Рекуррентные соотношения ]
Сложность: 3+
Классы: 11

Про последовательность x1, x2, ..., xn, ... известно, что для любого n > 1 выполнено равенство 3xn - xn - 1 = n. Кроме того, известно, что | x1| < 1971. Вычислить x1971 с точностью до 0, 000001.
Прислать комментарий     Решение


Задача 78787

Темы:   [ Целочисленные решетки ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 8,9

Имеется сетка, состоящая из квадратов размером 1×1. Каждый её узел покрашен в один из четырёх данных цветов так, что вершины любого квадрата 1×1 покрашены в разные цвета. Доказать, что найдётся прямая, принадлежащая сетке, такая, что узлы, лежащие на ней, покрашены в два цвета.
Прислать комментарий     Решение


Задача 78810

Тема:   [ Взвешивания ]
Сложность: 3+
Классы: 9

Имеется 1000 монет, среди них 0, 1 или 2 фальшивые. Известно, что фальшивые монеты имеют одинаковую массу, отличную от массы нефальшивых монет. Можно ли за три взвешивания на чашечных весах без гирь определить, есть ли фальшивые монеты и легче они или тяжелее нормальных? (Количество монет определять не надо.)
Прислать комментарий     Решение


Задача 78812

Темы:   [ Вписанный угол равен половине центрального ]
[ Правильный (равносторонний) треугольник ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC проведены медианы AD и BE. Углы CAD и CBE равны 30o. Доказать, что треугольник ABC правильный.
Прислать комментарий     Решение


Задача 79238

Темы:   [ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Неравенства с углами ]
Сложность: 3+
Классы: 9

Пусть на плоскости есть пять точек общего положения, то есть никакие три из них не лежат на одной прямой и никакие четыре — на одной окружности. Докажите, что среди этих точек есть две такие, что они лежат по разные стороны от окружности, проходящей через оставшиеся три точки.
Прислать комментарий     Решение


Страница: << 175 176 177 178 179 180 181 >> [Всего задач: 1982]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .