Страница:
<< 211 212 213 214
215 216 217 >> [Всего задач: 1984]
|
|
|
Сложность: 4- Классы: 8,9,10
|
Дана следующая треугольная таблица чисел:
Каждое число (кроме чисел верхней строчки) равно сумме двух ближайших чисел
предыдущей строчки.
Доказать, что число, стоящее в самой нижней строчке, делится на 1958.
|
|
|
Сложность: 4- Классы: 9,10
|
Внутри треугольника ABC взята точка O. На лучах OA, OB и OC построены векторы единичной длины.
Доказать, что сумма этих векторов имеет длину, меньшую единицы.
|
|
|
Сложность: 4- Классы: 9,10
|
Доказать, что если уравнения с целыми коэффициентами x² + p1x + q1, x² + p2x + q2 имеют общий нецелый корень, то p1 = p2 и q1 = q2.
|
|
|
Сложность: 4- Классы: 10,11
|
Какое наибольшее число осей симметрии может иметь пространственная фигура,
состоящая из трёх прямых, из которых никакие две не параллельны и не
совпадают?
|
|
|
Сложность: 4- Классы: 9,10,11
|
Доказать, что 11551958 + 341958 ≠ n², где n – целое.
Страница:
<< 211 212 213 214
215 216 217 >> [Всего задач: 1984]