ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Годы:
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 214 215 216 217 218 219 220 >> [Всего задач: 1957]      



Задача 78517

Темы:   [ Квадратные корни (прочее) ]
[ Уравнения в целых числах ]
[ Итерации ]
Сложность: 4-
Классы: 8,9

Решить в целых числах уравнение   = m.

Прислать комментарий     Решение

Задача 78540

Темы:   [ Многоугольники и многогранники с вершинами в узлах решетки ]
[ Четность и нечетность ]
Сложность: 4-
Классы: 9,10

На клетчатой бумаге начерчена замкнутая ломаная с вершинами в узлах сетки, все звенья которой равны.
Доказать, что число звеньев такой ломаной чётно.

Прислать комментарий     Решение

Задача 78541

Темы:   [ Индукция (прочее) ]
[ Задачи на смеси и концентрации ]
[ Теория алгоритмов (прочее) ]
Сложность: 4-
Классы: 8,9,10,11

В n мензурок налиты n разных жидкостей, кроме того, имеется одна пустая мензурка. Можно ли за конечное число операций составить равномерные смеси в каждой мензурке, то есть сделать так, чтобы в каждой мензурке было равно 1/n от начального количества каждой жидкости, и при этом одна мензурка была бы пустой. (Мензурки одинаковые, но количества жидкостей в них могут быть разными; предполагается, что можно отмерять любой объём жидкости.)

Прислать комментарий     Решение

Задача 78544

Темы:   [ Формула включения-исключения ]
[ Функция Эйлера ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 4-
Классы: 10,11

Имеется бесконечное количество карточек, на каждой из которых написано какое-то натуральное число. Известно, что для любого натурального числа n существуют ровно n карточек, на которых написаны делители этого числа. Доказать, что каждое натуральное число встречается хотя бы на одной карточке.

Прислать комментарий     Решение

Задача 78565

Темы:   [ Фазовая плоскость коэффициентов ]
[ Квадратные уравнения. Формула корней ]
[ Квадратные уравнения. Теорема Виета ]
[ Методы решения задач с параметром ]
[ Графики и ГМТ на координатной плоскости ]
Сложность: 4-
Классы: 9,10,11

В квадратном уравнении  x² + px + q  коэффициенты p, q независимо пробегают все значения от –1 до 1 включительно.
Найти множество значений, которые при этом принимает действительный корень данного уравнения.

Прислать комментарий     Решение

Страница: << 214 215 216 217 218 219 220 >> [Всего задач: 1957]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .