ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Годы:
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 210 211 212 213 214 215 216 >> [Всего задач: 1957]      



Задача 78190

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 4-
Классы: 8,9

Дано n чисел, x1, x2, ..., xn, при этом  xk = ±1.  Доказать, что если  x1x2 + x2x3 + ... + xnx1 = 0,  то n делится на 4.

Прислать комментарий     Решение

Задача 78212

Тема:   [ Системы точек и отрезков (прочее) ]
Сложность: 4-
Классы: 9,10

Даны отрезки AB, CD и точка O. Конец отрезка называется "отмеченным", если прямая, проходящая через него и точку O, не пересекает другой отрезок. Сколько может быть отмеченных концов?
Прислать комментарий     Решение


Задача 78219

Темы:   [ Десятичная система счисления ]
[ Делимость чисел. Общие свойства ]
Сложность: 4-
Классы: 9,10,11

В десятичной записи целого числа A все цифры, кроме первой и последней, нули, первая и последняя – не нули, число цифр – не меньше трёх.
Доказать, что A не является точным квадратом.

Прислать комментарий     Решение

Задача 78232

Темы:   [ ГМТ - окружность или дуга окружности ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 4-
Классы: 10,11

Найти геометрическое место центров прямоугольников, описанных около данного остроугольного треугольника.
Прислать комментарий     Решение


Задача 78247

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Арифметическая прогрессия ]
Сложность: 4-
Классы: 9,10

Два отрезка натурального ряда из 1961 числа подписаны один под другим. Доказать, что каждый из них можно так переставить, что если сложить числа, стоящие одно под другим, получится снова отрезок натурального ряда.
Прислать комментарий     Решение


Страница: << 210 211 212 213 214 215 216 >> [Всего задач: 1957]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .