Страница:
<< 210 211 212 213
214 215 216 >> [Всего задач: 1957]
Дано n чисел, x1, x2, ..., xn, при этом xk = ±1. Доказать, что если x1x2 + x2x3 + ... + xnx1 = 0, то n делится на 4.
|
|
Сложность: 4- Классы: 9,10
|
Даны отрезки
AB,
CD и точка
O. Конец отрезка называется
"отмеченным", если прямая, проходящая через него и точку
O, не
пересекает другой отрезок. Сколько может быть отмеченных концов?
|
|
Сложность: 4- Классы: 9,10,11
|
В десятичной записи целого числа A все цифры, кроме первой и последней, нули, первая и последняя – не нули, число цифр – не меньше трёх.
Доказать, что A не является точным квадратом.
|
|
Сложность: 4- Классы: 10,11
|
Найти геометрическое место центров прямоугольников, описанных около данного
остроугольного треугольника.
|
|
Сложность: 4- Классы: 9,10
|
Два отрезка натурального ряда из 1961 числа подписаны один под другим.
Доказать, что каждый из них можно так переставить, что если сложить числа,
стоящие одно под другим, получится снова отрезок натурального ряда.
Страница:
<< 210 211 212 213
214 215 216 >> [Всего задач: 1957]