ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 102 103 104 105 106 107 108 >> [Всего задач: 2404]      



Задача 86925

Темы:   [ Свойства сечений ]
[ Прямые и плоскости в пространстве (прочее) ]
Сложность: 3
Классы: 8,9

Основание пирамиды SABCD – параллелограмм ABCD . Какая фигура получилась в сечении этой пирамиды плоскостью ABM , где M – точка на ребре SC ?
Прислать комментарий     Решение


Задача 86926

Темы:   [ Параллелепипеды ]
[ Свойства сечений ]
Сложность: 3
Классы: 8,9

Может ли в сечении параллелепипеда плоскостью получиться правильный пятиугольник?
Прислать комментарий     Решение


Задача 86929

Темы:   [ Расстояние между скрещивающимися прямыми ]
[ Прямые и плоскости в пространстве ]
Сложность: 3
Классы: 8,9

Докажите, что через данную точку можно провести плоскость, параллельную двум данным скрещивающимся прямым, и притом только одну.
Прислать комментарий     Решение


Задача 86931

Темы:   [ Трехгранные и многогранные углы (прочее) ]
[ Прямые и плоскости в пространстве ]
Сложность: 3
Классы: 8,9

Докажите, что выпуклый четырёхгранный угол можно пересечь плоскостью так, чтобы в сечении получился параллелограмм.
Прислать комментарий     Решение


Задача 86941

Темы:   [ Свойства сечений ]
[ Параллелепипеды (прочее) ]
Сложность: 3
Классы: 10,11

Через середины M и N рёбер соответственно AA1 и C1D1 параллелепипеда ABCDA1B1C1D1 проведена плоскость параллельно диагонали BD основания. Постройте сечение параллелепипеда этой плоскостью. В каком отношении она делит диагональ A1C ?
Прислать комментарий     Решение


Страница: << 102 103 104 105 106 107 108 >> [Всего задач: 2404]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .