Страница:
<< 36 37 38 39
40 41 42 >> [Всего задач: 1435]
|
|
Сложность: 3+ Классы: 8,9,10
|
Высоты неравнобедренного остроугольного треугольника ABC пересекаются в точке H. O – центр описанной окружности треугольника BHC. Центр I вписанной окружности треугольника ABC лежит на отрезке OA. Найдите угол A.
На стороне AB треугольника ABC отмечена точка K так, что AB = CK. Точки N и M – середины отрезков AK и BC соответственно. Отрезки NM и CK пересекаются в точке P. Докажите, что KN = KP.
В треугольнике ABC проведена медиана CF. Точки X и Y симметричны F относительно медиан AD и BE соответственно.
Докажите, что центры описанных окружностей треугольников BEX и ADY совпадают.
|
|
Сложность: 3+ Классы: 8,9,10,11
|
В треугольнике $ABC$ точка $M$ – середина стороны $BC$, точка $E$ лежит внутри стороны $AC$, $BE \geqslant 2AM$. Докажите, что треугольник $ABC$ тупоугольный.
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Отрезки $AA', BB'$ и $CC'$ с концами на сторонах остроугольного треугольника $ABC$ пересекаются в точке $P$ внутри треугольника. На каждом из этих отрезков как на диаметре построена окружность, в которой перпендикулярно этому диаметру проведена хорда через точку $P$. Оказалось, что три проведённые хорды имеют одинаковую длину. Докажите, что $P$ – точка пересечения высот треугольника $ABC$.
Страница:
<< 36 37 38 39
40 41 42 >> [Всего задач: 1435]