Страница:
<< 17 18 19 20 21
22 23 >> [Всего задач: 114]
|
|
Сложность: 4+ Классы: 8,9,10
|
На плоскости дан угол и точка К внутри него. Доказать, что найдётся точка М, обладающая следующим свойством: если произвольная прямая, проходящая через К, пересекает стороны угла в точках А и В, то МК является биссектрисой угла АМВ.
|
|
Сложность: 5- Классы: 9,10,11
|
AA1, BB1, CC1 – высоты треугольника ABC, B0 – точка пересечения BB1 и описанной окружности Ω, Q – вторая точка пересечения Ω и описанной окружности ω треугольника A1C1B0. Докажите, что BQ – симедиана треугольника ABC.
|
|
Сложность: 5- Классы: 9,10,11
|
Пусть AK и BL – высоты остроугольного треугольника ABC, а Ω – вневписанная окружность ABC, касающаяся стороны AB. Общие внутренние касательные к описанной окружности ω треугольника CKL и окружности Ω пересекают прямую AB в точках P и Q. Докажите, что AP = BQ.
|
|
Сложность: 5- Классы: 9,10
|
На стороне BC квадрата ABCD выбрали точку M. Пусть X, Y, Z – центры окружностей, вписанных в треугольники ABM, CMD, AMD соответственно; Hx, Hy, Hz – ортоцентры треугольников AXB, CYD, AZD соответственно. Докажите, что точки Hx, Hy, Hz лежат на одной прямой.
|
|
Сложность: 5+ Классы: 10,11
|
Дан вписанный четырёхугольник ABCD. Внутри треугольника BCD взяли точку La, расстояния от которой до сторон треугольника пропорциональны этим сторонам. Аналогично внутри треугольников ACD, ABD, ABC взяли точки Lb, Lc и Ld соответственно. Оказалось, что четырёхугольник LaLbLcLd вписанный. Докажите, что у ABCD есть две параллельные стороны.
Страница:
<< 17 18 19 20 21
22 23 >> [Всего задач: 114]