ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 75 76 77 78 79 80 81 >> [Всего задач: 2393]      



Задача 87361

Тема:   [ Перпендикулярные плоскости ]
Сложность: 5
Классы: 10,11


Основанием пирамиды THPCK служит выпуклый четырехугольник THPC, который диагональю HC делится на два равновеликих треугольника. Длина ребра TH равна 4, ctg$ \angle$HCP = $ \sqrt{2}$. Сумма длин ребер TK и CK равна 4. Объем пирамиды равен 5$ {\frac{1}{3}}$. Найдите радиус шара, имеющего наибольший объем среди шаров, помещающихся в пирамиде THPCK.

Прислать комментарий     Решение


Задача 87362

Тема:   [ Перпендикулярные плоскости ]
Сложность: 5
Классы: 10,11


Основанием пирамиды ABMCP сужит выпуклый четырехугольник ABMC, в котором угол при вершине A равен $ \pi$/6, длина ребра AB равна единице . Площадь треугольника BMC в два раза больше площади треугольника ABC. Сумма длин ребер BP и CP равна $ \sqrt{7}$. Объем пирамиды равен 3/4. Найдите радиус шара, имеющего наименьший объем среди всех шаров, помещающихся в пирамиде ABMCP.

Прислать комментарий     Решение


Задача 65211

Темы:   [ Сферы (прочее) ]
[ Комбинаторная геометрия (прочее) ]
[ Неравенство треугольника (прочее) ]
[ Принцип Дирихле (прочее) ]
Сложность: 5
Классы: 10,11

На поверхности сферической планеты расположены четыре материка, отделённые друг от друга океаном. Назовем точку океана особой, если для нее найдутся не менее трёх ближайших (находящихся от нее на равных расстояниях) точек суши, причём все на разных материках. Какое наибольшее число особых точек может быть на этой планете?

Прислать комментарий     Решение

Задача 67203

Темы:   [ Проектирование помогает решить задачу ]
[ Вписанные и описанные окружности ]
Сложность: 5
Классы: 10,11

В треугольнике $ABC$ высоты $BE$ и $CF$ пересекаются в точке $H$, точка $M$ — середина стороны $BC$, а $X$ — точка пересечения внутренних касательных к окружностям, вписанным в треугольники $BMF$ и $CME$. Докажите, что точки $X$, $M$ и $H$ лежат на одной прямой.
Прислать комментарий     Решение


Задача 67205

Темы:   [ Многогранники и многоугольники (прочее) ]
[ Классические неравенства ]
[ Степень вершины ]
Сложность: 5
Классы: 10,11

В выпуклом многограннике обозначим через B, P и T соответственно число вершин, рёбер и максимальное число треугольных граней, которые имеют общую вершину. Докажите, что {$\text{В}\sqrt{\text{Р}+\text{Т}}\geqslant 2\text{Р}$}.

Например, для тетраэдра ($\text{В}=4$, $\text{Р}=6$, $\text{Т}=3$) выполняется равенство, а для треугольной призмы ($\text{В}=6$, $\text{Р}=9$, $\text{Т}=1$) или куба ($\text{В}=8$, $\text{Р}=12$, $\text{Т}=0$) имеет место строгое неравенство.
Прислать комментарий     Решение


Страница: << 75 76 77 78 79 80 81 >> [Всего задач: 2393]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .