Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 17 задач
Версия для печати
Убрать все задачи

С помощью циркуля и линейки разделите данный отрезок на n равных частей.

Вниз   Решение


В треугольнике ABC на сторонах AB, AC и BC выбраны точки D, E и F соответственно так, что  BF = 2CF,  CE = 2AE  и угол DEF – прямой.
Докажите, что DE – биссектриса угла ADF.

ВверхВниз   Решение


Пусть $AL$ — биссектриса треугольника $ABC$, точка $D$ — ее середина, $E$ — проекция $D$ на $AB$. Известно, что $AC = 3 AE$. Докажите, что треугольник $CEL$ равнобедренный.

ВверхВниз   Решение


Докажите, что в прямоугольном треугольнике биссектриса, проведённая из вершины прямого угла, не превосходит половины проекции гипотенузы на прямую, перпендикулярную этой биссектрисе.

ВверхВниз   Решение


На сторонах AB и BC треугольника ABC выбраны соответственно точки C1 и A1, отличные от вершин. Пусть K – середина A1C1, а I – центр окружности, вписанной в треугольник ABC. Оказалось, что четырёхугольник A1BC1I вписанный. Докажите, что угол AKC тупой.

ВверхВниз   Решение


Докажите, что если при инверсии относительно некоторой окружности с центром O окружность S переходит в окружность S' , то O — один из центров гомотетии окружностей S и S' .

ВверхВниз   Решение


С помощью циркуля и линейки постройте образ прямой при инверсии относительно данной окружности.

ВверхВниз   Решение


На сторонах AB, BC, CA треугольника ABC выбраны точки P, Q, R соответственно таким образом, что  AP = CQ  и четырёхугольник RPBQ– вписанный. Касательные к описанной окружности треугольника ABC в точках A и C пересекают прямые RP и RQ в точках X и Y соответственно. Докажите, что  RX = RY.

ВверхВниз   Решение


а) В каждой вершине куба написано число 1 или число 0. На каждой грани куба написана сумма четырёх чисел, написанных в вершинах этой грани. Может ли оказаться, что все числа, написанные на гранях, различны?
б) Тот же вопрос, если в вершинах написаны числа 1 или –1.

ВверхВниз   Решение


В сегмент вписываются всевозможные пары касающихся окружностей. Найдите множество их точек касания.

ВверхВниз   Решение


С помощью циркуля и линейки постройте окружность, касающуюся трёх данных попарно пересекающихся окружностей, проходящих через одну точку.

ВверхВниз   Решение


С помощью циркуля и линейки постройте образ данной окружности при инверсии относительно другой данной окружности.

ВверхВниз   Решение


Задача Паппа. III в. н.э.}На отрезке AB взята точка C и на отрезках AB , BC , CA как на диаметрах построены соответственно полуокружности α , β , γ по одну сторону от AC . В криволинейный треугольник, образованный этими полуокружностями, вписана окружность δ1 , в криволинейный треугольник, образованный полуокружностями α , β и окружностью δ1 , вписана окружность δ2 и т.д. (окружность δn вписана в криволинейный треугольник, образованный полуокружностями α , β и окружностью δn-1 , n=2,3, .. ). Пусть rn — радиус окружности δn , dn — расстояние от центра окружности δn до прямой AB . Докажите, что = 2n .

ВверхВниз   Решение


Докажите, что если окружность и прямая (либо две окружности) касаются в точке M , отличной от точки O , то их образы при инверсии относительно окружности с центром O также касаются, а при инверсии с центром M окружность и прямая (две окружности) переходят в две параллельные прямые.

ВверхВниз   Решение


С помощью циркуля и линейки постройте окружность, касающуюся двух данных окружностей и проходящую через данную точку, лежащую вне этих окружностей.

ВверхВниз   Решение


В классе 25 учеников. Известно, что у любых двух девочек класса количество друзей-мальчиков из этого класса не совпадает. Какое наибольшее количество девочек может быть в этом классе?

ВверхВниз   Решение


Таня стоит на берегу речки. У неё есть два глиняных кувшина: один — на 5 литров, а про второй Таня помнит лишь то, что он вмещает то ли 3, то ли 4 литра. Помогите Тане определить ёмкость второго кувшина. (Заглядывая в кувшин, нельзя понять, сколько в нём воды.)

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 276]      



Задача 104060

Тема:   [ Теория алгоритмов (прочее) ]
Сложность: 2+
Классы: 6,7,8

Таня стоит на берегу речки. У неё есть два глиняных кувшина: один — на 5 литров, а про второй Таня помнит лишь то, что он вмещает то ли 3, то ли 4 литра. Помогите Тане определить ёмкость второго кувшина. (Заглядывая в кувшин, нельзя понять, сколько в нём воды.)
Прислать комментарий     Решение


Задача 35714

Темы:   [ Теория алгоритмов (прочее) ]
[ Индукция (прочее) ]
Сложность: 3-
Классы: 7,8,9

На столе стоят восемь стаканов с водой. Разрешается взять любые два стакана и уравнять в них количества воды, перелив часть воды из одного стакана в другой. Докажите, что с помощью таких операций можно добиться того, чтобы во всех стаканах было поровну воды.
Прислать комментарий     Решение


Задача 88001

Темы:   [ Теория алгоритмов (прочее) ]
[ Процессы и операции ]
Сложность: 3-
Классы: 6,7,8

Путешественник, сняв в гостинице комнату на неделю, предложил хозяину в уплату цепочку из семи серебряных колец  — по кольцу за день, с тем, однако, условием, что будет рассчитываться ежедневно. Хозяин согласился, оговорив со своей стороны, что можно распилить только одно кольцо. Как путешественнику удалось расплатиться с хозяином гостиницы?
Прислать комментарий     Решение


Задача 88031

Темы:   [ Теория алгоритмов (прочее) ]
[ Процессы и операции ]
Сложность: 3-
Классы: 5,6,7,8

Имеются 6 запертых чемоданов и 6 ключей к ним. При этом неизвестно, к какому чемодану подходит какой ключ. Какое наименьшее число попыток надо сделать, чтобы наверняка открыть все чемоданы? А сколько понадобится попыток, если ключей и чемоданов будет не по 6, а по 10?
Прислать комментарий     Решение


Задача 35733

Темы:   [ Теория алгоритмов (прочее) ]
[ Тождественные преобразования ]
Сложность: 3-
Классы: 7,8,9

Сломанный калькулятор выполняет только одну операцию "звездочка":  ab = 1 – a : b.
Докажите, что с помощью этого калькулятора все же возможно выполнить любое из четырёх арифметических действий.

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 276]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .