ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Существует ли выпуклый многогранник, имеющий 12 рёбер, которые соответственно равны и параллельны 12 диагоналям граней куба?

   Решение

Задачи

Страница: << 91 92 93 94 95 96 97 >> [Всего задач: 2393]      



Задача 116514

Темы:   [ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Касающиеся сферы ]
[ Неопределено ]
Сложность: 2+
Классы: 10,11

Три сферы попарно касаются внешним образом, а также касаются некоторой плоскости в вершинах прямоугольного треугольника с катетом 1 и противолежащим углом 30°. Найдите радиусы сфер.

Прислать комментарий     Решение

Задача 35076

Темы:   [ Неравенство треугольника (прочее) ]
[ Стереометрия (прочее) ]
Сложность: 2+
Классы: 8,9,10

Докажите, что шесть ребер любого тетраэдра можно разбить на три пары (a,b), (c,d), (e,f) так, чтобы из отрезков длин a+b, c+d, e+f можно было составить треугольник.
Прислать комментарий     Решение


Задача 32036

Темы:   [ Разбиения на пары и группы; биекции ]
[ Куб ]
[ Принцип Дирихле (прочее) ]
Сложность: 3-
Классы: 6,7,8

Петя написал на гранях кубика натуральные числа от 1 до 6. Вася кубика не видел, но утверждает, что

а) у этого кубика есть две соседние грани, на которых написаны соседние числа;

б) таких пар соседних граней у кубика не меньше двух.

Прав ли он в обоих случаях? Почему?

Прислать комментарий     Решение


Задача 104119

Темы:   [ Куб ]
[ Задачи на максимум и минимум (прочее) ]
Сложность: 3-
Классы: 7,8,9

На прозрачном столе стоит куб 3×3×3, составленный из 27 одинаковых кубиков. Со всех шести сторон (спереди, сзади, слева, справа, сверху, снизу) мы видим квадрат 3×3. Какое наибольшее число кубиков можно убрать так, чтобы со всех сторон был виден квадрат 3×3 и при этом оставшаяся система кубиков не разваливалась?
Прислать комментарий     Решение


Задача 107623

Темы:   [ Правильные многогранники. Двойственность и взаимосвязи ]
[ Куб ]
Сложность: 3-
Классы: 10,11

Существует ли выпуклый многогранник, имеющий 12 рёбер, которые соответственно равны и параллельны 12 диагоналям граней куба?
Прислать комментарий     Решение


Страница: << 91 92 93 94 95 96 97 >> [Всего задач: 2393]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .