Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 17 задач
Версия для печати
Убрать все задачи

Автор: Солынин А.

Кристалл пирита представляет собой параллелепипед, на каждую грань которого нанесена штриховка.

На любых двух соседних гранях штриховка перпендикулярна. Существует ли выпуклый многогранник с числом граней, не равным $6$, грани которого можно заштриховать аналогичным образом?

Вниз   Решение


Автор: Bapat R.B.

В каждой клетке квадратной таблицы написано по числу. Известно, что в каждой строке таблицы сумма двух наибольших чисел равна a,
а в каждом столбце сумма двух наибольших чисел равна b. Докажите, что  a = b.

ВверхВниз   Решение


Дан треугольник ABC, в котором  AB > BC.  Касательная к его описанной окружности в точке B пересекает прямую AC в точке P. Точка D симметрична точке B относительно точки P, а точка E симметрична точке C относительно прямой BP. Докажите, что четырёхугольник ABED – вписанный.

ВверхВниз   Решение


Автор: Джукич Д.

Найдите все такие нечётные натуральные  n > 1,  что для любых взаимно простых делителей a и b числа n число  a + b – 1  также является делителем n.

ВверхВниз   Решение


В выпуклом четырёхугольнике ABCD  AB = BC.  Лучи BA и CD пересекаются в точке E, а лучи AD и BC – в точке F. Известно также, что  BE = BF  и
DEF = 25°.  Найдите угол EFD.

ВверхВниз   Решение


Автор: Тахаев С.

Окружности $\alpha$, $\beta$, $\gamma$ касаются друг друга внешним образом и касаются изнутри окружности $\Omega$ в точках $A_1$, $B_1$, $C_1$ соответственно. Общая внутренняя касательная к $\alpha$ и $\beta$ пересекает не содержащую $C_1$ дугу $A_1B_1$ в точке $C_2$. Точки $A_2$, $B_2$ определяются аналогично. Докажите, что прямые $A_1A_2$, $B_1B_2$, $C_1C_2$ пересекаются в одной точке.

ВверхВниз   Решение


Все натуральные числа от 1 до 1000 включительно разбиты на две группы: чётные и нечётные.
В какой из групп сумма всех цифр, используемых для записи чисел, больше и на сколько?

ВверхВниз   Решение


В треугольнике ABC прямые, содержащие высоты AP, CR, и BQ (точки P, R и Q лежат на прямых, содержащих соответствующие стороны треугольника ABC), пересекаются в точке O. Найдите площади треугольников ABC и POC, если известно, что RP параллельно AC, AC = 4 и sin$ \angle$ABC = $ {\frac{24}{25}}$.

ВверхВниз   Решение


Докажите, что любой квадратный трёхчлен можно представить в виде суммы двух квадратных трёхчленов с нулевыми дискриминантами.

ВверхВниз   Решение


Даны точки A(- 6; - 1), B(1;2) и C(- 3; - 2). Найдите координаты вершины M параллелограмма ABMC.

ВверхВниз   Решение


Двугранный угол при основании правильной n -угольной пирамиды равен β . Найдите двугранный угол между соседними боковыми гранями.

ВверхВниз   Решение


Автор: Скробот Д.

Дан треугольник ABC. Окружность ω касается описанной окружности Ω треугольника ABC в точке A, пересекает сторону AB в точке K, а также пересекает сторону BC. Касательная CL к окружности ω такова, что отрезок KL пересекает сторону BC в точке T. Докажите, что отрезок BT равен по длине касательной, проведённой из точки B к ω.

ВверхВниз   Решение


По рёбрам выпуклого многогранника с 2003 вершинами проведена замкнутая ломаная, проходящая через каждую вершину ровно один раз. Докажите, что в каждой из частей, на которые эта ломаная делит поверхность многогранника, количество граней с нечётным числом сторон нечётно.

ВверхВниз   Решение


В треугольнике $ABC$ $I$ – центр вписанной окружности, $D$ – произвольная точка на стороне $BC$, серединный перпендикуляр к отрезку $AD$ пресекает прямые $BI$ и $CI$ в точках $F$ и $E$ соответственно. Найдите геометрическое место ортоцентров треугольников $EIF$.

ВверхВниз   Решение


Найдите все такие пары  (x, y)  натуральных чисел, что  x + y = an,  x² + y² = am  для некоторых натуральных a, n, m.

ВверхВниз   Решение


Дан квадратный трёхчлен  f(x) = x² + ax + b.  Уравнение  f(f(x)) = 0  имеет четыре различных действительных корня, сумма двух из которых равна  –1. Докажите, что  b ≤ – ¼.

ВверхВниз   Решение


Диагонали вписанного в окружность радиуса R четырёхугольника ABCD пересекаются в точке M. Известно, что  AB = BC = a,  BD = m.
Найдите радиус описанной окружности треугольника BCM.

Вверх   Решение

Задачи

Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 1282]      



Задача 102250

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Теорема косинусов ]
Сложность: 3+
Классы: 8,9

В трапеции CDEA основание CA = 15, основание DE = 9, DA = 13. На описанной около трапеции CDEA окружности взята отличная от A точка B так, что DB = 13. Найдите длину отрезка CB и площадь пятиугольника ABCDE.
Прислать комментарий     Решение


Задача 108068

Темы:   [ Вписанный угол равен половине центрального ]
[ Медиана, проведенная к гипотенузе ]
[ Поворот помогает решить задачу ]
Сложность: 3+
Классы: 8,9

Известно, что вершины квадрата T принадлежат прямым, содержащим стороны квадрата P, а вписанная окружность квадрата T совпадает с описанной окружностью квадрата P. Найдите углы восьмиугольника, образованного вершинами квадрата P и точками касания окружности со сторонами квадрата T, и величины дуг, на которые вершины восьмиугольника делят окружность.

Прислать комментарий     Решение

Задача 108105

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки и свойства параллелограмма ]
Сложность: 3+
Классы: 8,9

Автор: Сонкин М.

В остроугольном треугольнике ABC через центр O описанной окружности и вершины B и C проведена окружность S. Пусть OK – диаметр окружности S, D и E – соответственно точки её пересечения с прямыми AB и AC. Докажите, что ADKE – параллелограмм.

Прислать комментарий     Решение

Задача 108449

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные четырехугольники (прочее) ]
[ Отношения линейных элементов подобных треугольников ]
[ Вписанные и описанные окружности ]
Сложность: 3+
Классы: 8,9

Диагонали вписанного в окружность радиуса R четырёхугольника ABCD пересекаются в точке M. Известно, что  AB = BC = a,  BD = m.
Найдите радиус описанной окружности треугольника BCM.

Прислать комментарий     Решение

Задача 111335

Темы:   [ Вписанный угол равен половине центрального ]
[ Вспомогательные равные треугольники ]
[ Симметрия помогает решить задачу ]
Сложность: 3+
Классы: 8,9

Пусть AL – биссектриса треугольника ABC, O – центр описанной около этого треугольника окружности, D – такая точка на стороне AC, что  AD = AB.  Докажите, что прямые AO и LD перпендикулярны.

Прислать комментарий     Решение

Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 1282]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .