|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Докажите, что сумма расстояний от произвольной точки до трех вершин равнобедренной трапеции больше расстояния от этой точки до четвертой вершины. Докажите, что если два противоположных угла четырехугольника тупые, то диагональ, соединяющая вершины этих углов, короче другой диагонали. Имеются две параллельные прямые p1 и p2.
Точки A и B лежат на p1, а C – на p2. Будем перемещать отрезок BC параллельно самому себе и рассмотрим все треугольники ABC, полученные таким образом. Найдите геометрическое место точек, являющихся в этих треугольниках: В четырехугольнике ABCD углы A и B равны, a Концы отрезков AB и CD перемещаются по сторонам данного угла, причем прямые AB и CD перемещаются параллельно; M – точка пересечения отрезков AB и CD. Докажите, что величина
Угол A четырехугольника ABCD тупой; F — середина стороны BC. Докажите, что 2FA < BD + CD. В шестиугольнике ABCDEF AB = BC, CD = DE, EF = FA и ∠A = ∠C = ∠E. |
Страница: << 1 2 3 4 5 6 >> [Всего задач: 28]
Имеются две параллельные прямые p1 и p2.
Точки A и B лежат на p1, а C – на p2. Будем перемещать отрезок BC параллельно самому себе и рассмотрим все треугольники ABC, полученные таким образом. Найдите геометрическое место точек, являющихся в этих треугольниках:
В треугольнике провели серединные перпендикуляры к его сторонам и измерили их отрезки, лежащие внутри треугольника.
В треугольнике $ABC$ провели биссектрису $CL$. Серединный перпендикуляр к стороне $AC$ пересекает отрезок $CL$ в точке $K$.
В шестиугольнике ABCDEF AB = BC, CD = DE, EF = FA и ∠A = ∠C = ∠E.
Страница: << 1 2 3 4 5 6 >> [Всего задач: 28] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|