ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На диагонали AC параллелограмма ABCD взята точка P так, что  AP : PC = 3 : 5.  Окружность с центром в точке P касается прямой BC и пересекает отрезок AD в точках K и L. Точка K лежит между точками A и L, AK = 9,  KL = 3,  LD = 12.  Найдите периметр параллелограмма ABCD.

   Решение

Задачи

Страница: << 39 40 41 42 43 44 45 >> [Всего задач: 1354]      



Задача 108091

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Правильный (равносторонний) треугольник ]
[ Взаимное расположение высот, медиан, биссектрис и проч. ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 7,8,9

В треугольнике ABC проведены биссектриса AK, медиана BL и высота CM. Треугольник KLM – равносторонний.
Докажите, что треугольник ABC – равносторонний.

Прислать комментарий     Решение

Задача 108239

Темы:   [ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Свойства симметрий и осей симметрии ]
Сложность: 3+
Классы: 7,8,9

Дан треугольник ABC. Точка A1 симметрична вершине A относительно прямой BC, а точка C1 симметрична вершине C относительно прямой AB.
Докажите, что если точки A1, B и C1 лежат на одной прямой и  C1B = 2A1B,  то угол CA1B – прямой.

Прислать комментарий     Решение

Задача 109548

Темы:   [ Признаки равенства прямоугольных треугольников ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 7,8,9

Автор: Вавилов В.

Три прямоугольных треугольника расположены в одной полуплоскости относительно данной прямой l так, что один из катетов каждого треугольника лежит на этой прямой. Известно, что существует прямая, параллельная l, пересекающая треугольники по равным отрезкам. Докажите, что если расположить треугольники в одной полуплоскости относительно прямой l так, чтобы другие их катеты лежали на прямой l, то также найдётся прямая, параллельная l , пересекающая их по равным отрезкам.

Прислать комментарий     Решение

Задача 110900

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Вспомогательные подобные треугольники ]
[ Признаки и свойства касательной ]
Сложность: 3+
Классы: 8,9

Точки M и N являются серединами боковых сторон AC и CB равнобедренного треугольника ACB. Точка L расположена на медиане BM так, что
BL : BM = 4 : 9.  Окружность с центром в точке L касается прямой MN и пересекает прямую AB в точках Q и T. Найдите периметр треугольника MNC, если  QT = 2,  AB = 8.

Прислать комментарий     Решение

Задача 110901

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Вспомогательные подобные треугольники ]
[ Признаки и свойства касательной ]
Сложность: 3+
Классы: 8,9

На диагонали AC параллелограмма ABCD взята точка P так, что  AP : PC = 3 : 5.  Окружность с центром в точке P касается прямой BC и пересекает отрезок AD в точках K и L. Точка K лежит между точками A и L, AK = 9,  KL = 3,  LD = 12.  Найдите периметр параллелограмма ABCD.

Прислать комментарий     Решение

Страница: << 39 40 41 42 43 44 45 >> [Всего задач: 1354]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .