ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Верёвочку сложили пополам, потом ещё раз пополам, потом снова пополам, а затем все слои верёвочки разрезали в одном месте. Фиксированы две окружности w1 и w2, одна их внешняя касательная l и одна их внутренняя касательная m. На прямой m выбирается точка X, а на прямой L строятся точки Y и Z так, что XY и XZ касаются w1 и w2 соответственно, а треугольник XYZ содержит окружности w1 и w2. Докажите, что центры окружностей, вписанных в треугольники XYZ, лежат на одной прямой. В треугольнике АВС проведена биссектриса BD. Докажите, что АВ > AD.
Сфера проходит через точки A , B , C , D и пересекает отрезки
SA , SB , SC , SD в точках A1 , B1 , C1 , D1
соответственно. Известно, что SD1 = Для некоторых чисел а, b, c и d, отличных от нуля, выполняется равенство: а) Все вершины пирамиды лежат на гранях куба, но не на его ребрах, причем на каждой грани лежит хотя бы одна вершина. Какое наибольшее количество вершин может иметь пирамида? б) Все вершины пирамиды лежат в плоскостях граней куба, но не на прямых, содержащих его ребра, причем в плоскости каждой грани лежит хотя бы одна вершина. Какое наибольшее количество вершин может иметь пирамида? |
Страница: << 70 71 72 73 74 75 76 >> [Всего задач: 2399]
а) Все вершины пирамиды лежат на гранях куба, но не на его ребрах, причем на каждой грани лежит хотя бы одна вершина. Какое наибольшее количество вершин может иметь пирамида? б) Все вершины пирамиды лежат в плоскостях граней куба, но не на прямых, содержащих его ребра, причем в плоскости каждой грани лежит хотя бы одна вершина. Какое наибольшее количество вершин может иметь пирамида?
В пространстве даны две пересекающиеся сферы разных радиусов и точка A, принадлежащая обеим сферам. Докажите, что в пространстве существует точка B, обладающая следующим свойством: если через точки A и B провести произвольную окружность, то точки ее повторного пересечения с данными сферами будут равноудалены от B.
На окружности расставлены 2009 чисел, каждое из которых равно 1 или –1, причём не все числа одинаковые. Рассмотрим всевозможные десятки подряд стоящих чисел. Найдём произведения чисел в каждом десятке и сложим их. Какая наибольшая сумма может получиться?
Известно, что всякую треугольную пирамиду, противоположные рёбра которой попарно равны, можно так разрезать вдоль трёх её рёбер и развернуть, чтобы её развёрткой стал треугольник без внутренних разрезов (см. рис.).
Двое игроков по очереди расставляют в каждой из 24 клеток поверхности куба 2×2×2 числа 1, 2, 3, 24 (каждое число можно ставить один раз). Второй игрок хочет, чтобы суммы чисел в клетках каждого кольца из 8 клеток, опоясывающего куб, были одинаковыми. Сможет ли первый игрок ему помешать?
Страница: << 70 71 72 73 74 75 76 >> [Всего задач: 2399]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке