|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Рассмотрим прямоугольник ABCD , в котором AB = 2 , BC = 3 . Отрезок KM параллелен AB (см.рис.), расположен на расстоянии 1 от плоскости ABCD и KM = 5 . Найдите объём многогранника ABCDKM . Через точку пересечения диагоналей трапеции проведена прямая, параллельная основанию и пересекающая боковые стороны в точках E и F. Отрезок EF равен 2. Найдите основания, если их отношение равно 4. В треугольной пирамиде ABCD известно, что DC = 9 , DB = AD , а ребро AC перпендикулярно грани ABD . Сфера радиуса 2 касается грани ABC , ребра DC , а также грани DAB , в точке пересечения её медиан. Найдите объём пирамиды. В комнате находятся 85 воздушных шаров — красных и синих. Известно, что: 1) по крайней мере один из шаров красный; 2) из каждой произвольно выбранной пары шаров по крайней мере один синий. Сколько в комнате красных шаров? Вписанная окружность неравнобедренного треугольника ABC касается сторон AB, BC и ABC в точках C1, A1 и B1 соответственно. Описанная окружность треугольника A1BC1 пересекает прямые B1A1 и B1C1 в точках A0 и C0 соответственно. Докажите, что ортоцентр H треугольника A0BC0, центр I вписанной окружности треугольника ABC и середина M стороны AC лежат на одной прямой. Докажите, что если α , β и γ – углы остроугольного треугольника, то sinα + sinβ + sinγ > 2 . n – натуральное число, n ≥ 4. Докажите, что n! ≥ 2n. В параллелограмме ABCD опустили перпендикуляр BH на сторону AD. На отрезке BH отметили точку M, равноудалённую от точек C и D. Пусть точка K – середина стороны AB. Докажите, что угол MKD прямой. |
Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 74]
В параллелограмме ABCD опустили перпендикуляр BH на сторону AD. На отрезке BH отметили точку M, равноудалённую от точек C и D. Пусть точка K – середина стороны AB. Докажите, что угол MKD прямой.
Дан треугольник ABC и точка P. Точки A', B', C' – проекции P на прямые BC, CA, AB. Прямая, проходящая через P и параллельная AB, вторично пересекает описанную окружность треугольника PA'B' в точке C1. Точки A1, B1 определены аналогично. Докажите, что
Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 74] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|