ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Сумма n последовательных натуральных чисел – простое число. Найдите все n, при которых это возможно. В прямоугольном треугольнике ABC (угол C прямой) BC=2AC, CH – высота, O1 и O2 – центры окружностей, вписанных соответственно в треугольники ACH и BCH, а O – центр окружности, вписанной в треугольник ABC. Пусть H1, H2 и H0 – проекции точек O1, O2 и O на гипотенузу. Докажите, что H1H=HH0=H0H2. Дано несколько выпуклых многоугольников, причем
нельзя провести прямую так, чтобы она не пересекала ни
одного многоугольника и по обе стороны от нее лежал
хотя бы один многоугольник. Докажите, что эти многоугольники
можно заключить в многоугольник, периметр которого
не превосходит суммы их периметров.
Незнайка рисует замкнутые пути внутри прямоугольника 5×8, идущие по диагоналям прямоугольников 1×2. На рисунке изображён пример пути, проходящего по 12 таким диагоналям. Помогите Незнайке нарисовать путь как можно длиннее. На двух параллельных прямых a и b выбраны точки A1, A2, ..., Am и B1, B2, ..., Bn
соответственно и проведены все отрезки вида AiBj Какое наименьшее натуральное число не является делителем 50!? В центре квадратного пруда плавает ученик. Внезапно к вершине квадрата подошёл учитель. Учитель не умеет плавать, но бегает в 4 раза быстрее, чем ученик плавает. Ученик бегает быстрее. Сможет ли он убежать? В треугольнике ABC AB = AC, угол A – тупой, BD – биссектриса, AM – высота, E – основание перпендикуляра, опущенного из D на сторону BC. Из точки D восставлен перпендикуляр к BD, который пересекает сторону BC в точке F. Известно, что ME = FC = a. Найдите площадь треугольника ABC.
С помощью циркуля и линейки по данному отрезку a, постройте отрезок b, где
а)
a =
б) a = 7,
b =
Когда мальчик Клайв подошел к дедушкиным настенным часам с кукушкой, на них было 12 часов 5 минут. Клайв стал крутить пальцем минутную стрелку, пока часовая не вернулась на прежнее место. Сколько "ку-ку" насчитал за это время дедушка в соседней комнате? Сторона AD прямоугольника ABCD в три раза больше стороны AB. Точки M и N делят AD на три равные части. Найдите ∠AMB + ∠ANB + ∠ADB. Известно, что в выпуклом n-угольнике (n > 3) никакие три диагонали не проходят через одну точку. Можно ли через вершины куба провести 8 параллельных плоскостей так, чтобы расстояния между соседними плоскостями были равны? Три шахматиста A, B и C сыграли матч-турнир (каждый с каждым сыграл одинаковое число партий). Может ли случиться, что по числу очков A занял первое место, C – последнее, а по числу побед, наоборот, A занял последнее место, C – первое (за победу присуждается одно очко, за ничью – пол-очка)? Предположим, что нашлись 15 простых чисел, образующих арифметическую прогрессию с разностью d. Докажите, что d > 30000. Внутри выпуклого n-угольника
A1A2...An взята
точка O так, что
В прямоугольном треугольнике катеты равны 75 и 100. На отрезках гипотенузы, образуемых основанием высоты, построены полуокружности по одну сторону с данным треугольником. Найдите отрезки катетов, заключённые внутри полукругов.
В лесу живёт 40 зверей – лисицы, волки, зайцы и барсуки. Ежегодно они устраивают бал-маскарад: каждый надевает маску животного другого вида, причём два года подряд они одну и ту же маску не носят. Два года назад на балу было 12 "лисиц" и 28 "волков", год назад – 15 "зайцев", 10 "лисиц" и 15 "барсуков", а в этом году – 15 "зайцев" и 25 "лисиц". Каких зверей в лесу больше всего?
Сторона AB треугольника ABC равна 1. На стороне AB как на диаметре построена окружность, которая делит сторону AC точкой D пополам, а сторону BC точкой E в отношении BE : EC = 7 : 2. Найдите сторону AC.
Можно ли увезти из каменоломни 50 камней, массы которых 370 кг, 372 кг, 374 кг, ..., 468 кг (арифметическая прогрессия с разностью 2 кг), на семи трёхтонках?
В прямоугольной трапеции лежат две окружности. Одна из них, радиуса 4, вписана в трапецию, а вторая, радиуса 1, касается двух сторон трапеции и первой окружности. Найдите площадь трапеции.
В прямоугольную трапецию вписана окружность радиуса R.
Найдите стороны трапеции, если её меньшее основание равно
|
Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 159]
В равнобедренной трапеции лежат две касающиеся окружности радиусов R, каждая из которых касается обоих оснований и одной из боковых сторон, а центры окружностей лежат на диагоналях. Найдите стороны трапеции.
В прямоугольном треугольнике ABC (угол C прямой) BC=2AC, CH – высота, O1 и O2 – центры окружностей, вписанных соответственно в треугольники ACH и BCH, а O – центр окружности, вписанной в треугольник ABC. Пусть H1, H2 и H0 – проекции точек O1, O2 и O на гипотенузу. Докажите, что H1H=HH0=H0H2.
Две окружности касаются друг друга внешним образом в точке A. Их общая касательная касается первой окружности в точке B, а второй в точке C. Прямая, проходящая через точки A и B, пересекает вторую окружность в точке D. Известно, что AB = 5 см, AD = 4 см. Найдите CD.
Две окружности касаются друг друга внешним образом в точке A. Их общая касательная касается первой окружности в точке B, а второй в точке C. Прямая, проходящая через точки A и B, пересекает вторую окружность в точке D. Известно, что BC = 10 см, AB = 8 см. Найдите площадь треугольника BCD.
В прямоугольную трапецию вписана окружность радиуса R.
Найдите стороны трапеции, если её меньшее основание равно
Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 159]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке