ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Среди всех таких чисел n, что любой выпуклый
100-угольник можно представить в виде пересечения (т. е.
общей части) n треугольников, найдите наименьшее.
На плоскости расположено 20 точек, никакие три из которых не лежат на одной
прямой, из них 10 синих и 10 красных.
Постройте треугольник по стороне, противолежащему углу и сумме двух других сторон.
Назовём натуральное число хорошим, если в его десятичной записи встречаются подряд цифры 1, 9, Постарайтесь найти возможно меньшее Около окружности радиуса R описана равнобедренная трапеция ABCD. E и K – точки касания этой окружности с боковыми сторонами трапеции. Угол между основанием AB и боковой стороной AD трапеции равен 60°. Докажите, что EK || AB и найдите площадь трапеции ABKE. В прямоугольном треугольнике ABC с равными катетами AC и BC на
стороне AC как на диаметре построена окружность, пересекающая
сторону AB в точке M. Найдите расстояние от вершины B до центра
этой окружности, если
BM =
Пусть c — наибольшая сторона треугольника со сторонами a, b, c. Докажите, что если a2 + b2 > c2, то треугольник остроугольный, а если a2 + b2 < c2, — тупоугольный.
Решите уравнение 2 sin πx/2 – 2 cos πx = x5 + 10x – 54. Равнобедренные треугольники ABC (AB = BC) и A1B1C1 (A1B1 = B1C1) подобны и AB : A1B1 = 2 : 1. Вершины A1, B1 и C1 расположены соответственно на сторонах CA, AB и BC, причём A1B1 ⊥ AC. Найдите угол B. В равнобедренной трапеции ABCD основания AD = 12, BC = 6, высота равна 4. Диагональ AC делит угол BAD трапеции на две части. Какая из них больше? В окружность вписан 101-угольник. Из каждой его вершины опустили перпендикуляр на прямую, содержащую противоположную сторону. Диагонали выпуклого четырёхугольника ABCD пересекаются в точке L. В треугольнике ABL отметили точку пересечения высот H, а в треугольниках BCL, CDL и DAL – центры O1, O2 и O3 описанных окружностей. Затем весь рисунок, кроме точек H, O1, O2, O3, стерли. Восстановите его.
Одна из сторон треугольника вдвое больше другой, а угол между этими сторонами равен 60o. Докажите, что треугольник — прямоугольный.
Меньшая сторона прямоугольника равна 1, острый угол между диагоналями равен 60o. Найдите радиус окружности, описанной около прямоугольника.
Гипотенуза AB прямоугольного треугольника ABC равна 9, катет BC равен 3. На гипотенузе взята точка M, причём AM : MB = 1 : 2. Найдите CM.
Прямая, параллельная основаниям трапеции, разбивает её на две подобные трапеции. |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 688]
Около окружности радиуса R описана равнобедренная трапеция ABCD. E и K – точки касания этой окружности с боковыми сторонами трапеции. Угол между основанием AB и боковой стороной AD трапеции равен 60°. Докажите, что EK || AB и найдите площадь трапеции ABKE.
В прямоугольной трапеции меньшее основание равно высоте, а большее основание равно a. Найдите боковые стороны трапеции, если известно, что одна из них касается окружности, проходящей через концы меньшего основания и касающейся большего основания.
В равнобедренную трапецию с боковой стороной, равной 9, вписана окружность радиуса 4. Найдите площадь трапеции.
Прямая, параллельная основаниям трапеции, разбивает её на две подобные трапеции.
Меньшее основание равнобедренной трапеции равно боковой стороне, а диагональ перпендикулярна боковой стороне. Найдите углы трапеции.
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 688]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке