ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В треугольнике ABC медианы, проведённые к сторонам AC и BC, пересекаются под прямым углом. Известно, что AC = b и BC = a. Найдите AB.

   Решение

Задачи

Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 181]      



Задача 108547

Темы:   [ Метод координат на плоскости ]
[ Свойства медиан. Центр тяжести треугольника. ]
Сложность: 3+
Классы: 8,9

Даны точки A(5;5), B(8; - 3) и C(- 4;1). Найдите координаты точки пересечения медиан треугольника ABC.

Прислать комментарий     Решение


Задача 115639

Темы:   [ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 8,9

Точки D и E расположены на стороне AC треугольника ABC. Прямые BD и BE разбивают медиану AM треугольника ABC на три равных отрезка.
Найдите площадь треугольника BDE, если площадь треугольника ABC равна 1.

Прислать комментарий     Решение

Задача 54440

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Свойства медиан. Центр тяжести треугольника. ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC медианы, проведённые к сторонам AC и BC, пересекаются под прямым углом. Известно, что AC = b и BC = a. Найдите AB.

Прислать комментарий     Решение


Задача 116258

Темы:   [ Ромбы. Признаки и свойства ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Средняя линия треугольника ]
Сложность: 3+
Классы: 8,9

На сторонах BC и CD ромба ABCD взяли точки P и Q соответственно так, что  BP = CQ.
Докажите, что точка пересечения медиан треугольника APQ лежит на диагонали BD ромба.

Прислать комментарий     Решение

Задача 55767

Темы:   [ Гомотетия: построения и геометрические места точек ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Гомотетия помогает решить задачу ]
[ Гомотетичные окружности ]
[ Гомотетия (ГМТ) ]
[ ГМТ - окружность или дуга окружности ]
Сложность: 4-
Классы: 8,9

На окружности фиксированы точки A и B, а точка C движется по этой окружности. Найдите геометрическое место точек пересечения медиан треугольников ABC.

Прислать комментарий     Решение


Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 181]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .