ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
arctg
Докажите равенство треугольников по стороне, медиане, проведённой к этой стороне, и углам, которые образует медиана с этой стороной. Основание AC равнобедренного треугольника ABC является хордой окружности, центр которой лежит внутри треугольника ABC. Прямые, проходящие через точку B, касаются окружности в точках D и E. Найдите площадь треугольника DBE, если AB = BC = 2, ∠B = 2 arcsin Докажите, что число 10...050...01 (в каждой из двух групп по 100 нулей) не является кубом целого числа. На листе бумаги отмечены точки A, B, C, D. Распознающее устройство может абсолютно точно выполнять два типа операций: а) измерять в сантиметрах расстояние между двумя заданными точками; б) сравнивать два заданных числа. Какое наименьшее число операций нужно выполнить этому устройству, чтобы наверняка определить, является ли четырёхугольник ABCD квадратом? Известно, что уравнение x4 + ax³ + 2x² + bx + 1 = 0 имеет действительный корень. Докажите неравенство a² + b² ≥ 8. Что больше: В четырёхугольнике ABCD вписанная окружность ω касается сторон BC и DA в точках E и F соответственно. Оказалось, что прямые AB, FE и CD пересекаются в одной точке S. Описанные окружности Ω и Ω1 треугольников AED и BFC, вторично пересекают окружность ω в точках E1 и F1. Докажите, что прямые EF и E1F1 параллельны. В равнобедренном треугольнике с боковой стороной, равной b, проведены биссектрисы углов при основании. Отрезок прямой между точками пересечения биссектрис с боковыми сторонами равен m. Найдите основание треугольника. В окружность с центром O вписана трапеция ABCD (BC || AD). В этой же окружности проведены диаметр CE и хорда BE, пересекающая AD в точке F. Точка H – основание перпендикуляра, опущенного из точки F на CE, S – середина отрезка EO, M – середина BD. Известно, что радиус окружности равен R, а CH = 9R/8. Найдите SM.
В равнобедренном треугольнике боковая сторона делится точкой касания вписанного круга в отношении 7:5 (начиная от вершины). Найдите отношение боковой стороны к основанию.
С числом разрешается производить две
операции: ``увеличить в два раза'' и ``увеличить на
1''. За какое наименьшее число операций можно из числа 0
получить
Докажите, что в прямоугольной трапеции разность квадратов диагоналей равна разности квадратов оснований. Дано 100 чисел a1, a2, a3, ..., a100, удовлетворяющих условиям: Прямая, параллельная стороне BC треугольника ABC, пересекает стороны AB и AC в точках P и Q соответственно. Внутри треугольника APQ взята точка M. Отрезки MB и MC пересекают отрезок PQ в точках E и F соответственно. Пусть N – вторая точка пересечения описанных окружностей ω1 и ω2 треугольников PMF и QME. Докажите, что точки A, M и N лежат на одной прямой.
Площади треугольников, образованных отрезками диагоналей трапеции и её основаниями, равны S1 и S2. Найдите площадь трапеции.
|
Страница: << 53 54 55 56 57 58 59 >> [Всего задач: 462]
На стороне BC треугольника ABC как на диаметре построена
окружность, пересекающая отрезок AB в точке D. Найдите отношение
площадей треугольников ABC и BCD, если известно, что AC = 15,
BC = 20 и
Отрезки, соединяющие основания высот остроугольного треугольника, равны 8, 15 и 17. Найдите площадь треугольника.
Площади треугольников, образованных отрезками диагоналей трапеции и её основаниями, равны S1 и S2. Найдите площадь трапеции.
В треугольнике ABC, площадь которого равна S, проведены биссектриса CE и медиана BD, пересекающиеся в точке O. Найдите площадь четырёхугольника ADOE, зная, что BC = a, AC = b.
В треугольнике ABC из вершины A проведена прямая,
пересекающая сторону BC в точке D, находящейся между точками B и
C, причём
Страница: << 53 54 55 56 57 58 59 >> [Всего задач: 462]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке