ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В правильной треугольной призме плоскость, проходящая через сторону одного основания и противоположную ей вершину другого основания, образует с плоскостью основания угол, равный 45o . Площадь сечения равна S . Найдите объём призмы. Найти наименьшее n такое, что любой выпуклый 100-угольник можно получить в виде пересечения n треугольников. Докажите, что для меньших n это можно сделать не с любым выпуклым 100-угольником. В выпуклом многоугольнике из каждой вершины опущены перпендикуляры на все не смежные с ней стороны. Может ли оказаться так, что основание каждого перпендикуляра попало на продолжение стороны, а не на саму сторону? На перпендикуляре к плоскости прямоугольника ABCD , проходящем через точку A , взята точка P , отличная от A . Докажите, что а) плоскость APB перпендикулярна плоскости APD ; б) плоскость APB перпендикулярна плоскости BPC ; в) плоскость APD перпендикулярна плоскости DPC . Точка D лежит на стороне AB треугольника ABC. Найдите CD, если известно, что BC = 37, AC = 15, AB = 44, AD = 14. Даны две непересекающиеся окружности. Найдите
геометрическое место точек центров окружностей, делящих
пополам данные окружности (т. е. пересекающих их в диаметрально
противоположных точках).
На доске нарисовали выпуклый многоугольник. В нём провели несколько диагоналей, не пересекающихся внутри него, так что он оказался разбит на треугольники. Затем возле каждой вершины записали число треугольников, примыкающих к этой вершине, после чего все диагонали стерли. Можно ли по оставшимся возле вершин числам восстановить стёртые диагонали? Назовем выпуклый семиугольник особым, если три
его диагонали пересекаются в одной точке. Докажите, что,
слегка пошевелив одну из вершин особого семиугольника,
можно получить неособый семиугольник.
Через две точки, лежащие в круге, провести окружность, лежащую целиком в том же круге. Докажите, что любой выпуклый многоугольник можно разрезать двумя взаимно перпендикулярными прямыми на четыре фигуры равной площади.
Высота пирамиды ABCD , опущенная из вершины D , проходит через
точку пересечения высот треугольника ABC . Кроме того, известно,
что DB = b , DC = c , а) Докажите, что пучок окружностей полностью задаётся парой окружностей.
Докажите, что отрезок, высекаемый на стороне AB
остроугольного треугольника ABC окружностью девяти точек, виден из ее
центра под углом
2| Внутри выпуклого многоугольника расположено несколько
попарно непересекающихся кругов различных радиусов.
Докажите, что многоугольник можно разрезать на
маленькие многоугольники так, чтобы все они были выпуклыми
и в каждом из них содержался ровно один из данных кругов.
Биссектриса, проведённая из вершины N треугольника MNP, делит сторону MP на отрезки, равные 28 и 12. |
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 43]
Углы треугольника равны α, β и γ, а периметр равен P. Найдите стороны треугольника.
Биссектриса, проведённая из вершины N треугольника MNP, делит сторону MP на отрезки, равные 28 и 12.
Один угол треугольника равен 60°, а лежащая против этого угла сторона равна трети периметра треугольника.
С помощью циркуля и линейки проведите через вершину треугольника прямую, делящую периметр треугольника пополам.
Докажите, что прямая, делящая пополам периметр и площадь треугольника, проходит через центр его вписанной окружности.
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 43]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке