Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 17 задач
Версия для печати
Убрать все задачи

Если повернуть многоугольник вокруг некоторой точки на 70 градусов, то он совместится сам с собой. Какое наименьшее число вершин может быть у такого многоугольника?

Вниз   Решение


Внутри окружности радиуса R расположено n точек. Докажите, что сумма квадратов попарных расстояний между ними не превосходит n2R2.

ВверхВниз   Решение


Автор: Шлейфер Р.

n чисел  (n > 1)  называются близкими, если каждое из них меньше чем сумма всех чисел, делённая на  n – 1.  Пусть  a, b, c, ...   – n близких чисел, S – их сумма. Докажите, что
  а) все они положительны;
  б)  a + b > c;
  в)  a + b > S/n–1.

ВверхВниз   Решение


Сетка линий, изображённая на рисунке, состоит из концентрических окружностей с радиусами 1, 2, 3, 4,... и центром в точке О, прямой l, проходящей через точку О, и всевозможных касательных к окружностям, параллельных l. Вся плоскость разбита этими линиями на клетки, которые раскрашены в шахматном порядке. В цепочке точек, показанных на рисунке, каждые две соседние точки являются противоположными вершинами тёмной клетки. Докажите, что все точки такой бесконечной цепочки лежат на одной параболе (поэтому рисунок словно соткан из светлых и тёмных парабол).

ВверхВниз   Решение


В угол вписаны две окружности ω и Ω. Прямая l пересекает стороны угла в точках A и F, окружность ω в точках B и C, окружность Ω в точках D и E (порядок точек на прямой – A, B, C, D, E, F). Пусть  BC = DE.  Докажите, что  AB = EF.

ВверхВниз   Решение


В равнобедренном треугольнике ABC  ∠ABC = 20°.  На равных сторонах CB и AB взяты соответственно точки P и Q так, что  ∠PAC = 50°  и  ∠QCA = 60°.
Докажите, что  ∠PQC = 30°.

ВверхВниз   Решение


Семь городов соединены по кругу семью односторонними авиарейсами (см. рисунок). Назначьте (нарисуйте стрелочками) ещё несколько односторонних рейсов так, чтобы от любого города до любого другого можно было бы добраться, сделав не более двух пересадок. Постарайтесь сделать число дополнительных рейсов как можно меньше.

ВверхВниз   Решение


Автор: Нилов Ф.

На отрезке AB построена дуга α (см. рис.). Окружность ω касается отрезка AB в точке T и пересекает α в точках C и D. Лучи AC и TD пересекаются в точке E, лучи BC и TC – в точке F. Докажите, что прямые EF и AB параллельны.

ВверхВниз   Решение


Докажите, что касательные к окружности, проведённые через концы диаметра, параллельны.

ВверхВниз   Решение


Автор: Иванов В.

  а) Вершины правильного 10-угольника закрашены чёрной и белой краской через одну. Двое играют в следующую игру. Каждый по очереди проводит отрезок, соединяющий вершины одинакового цвета. Эти отрезки не должны иметь общих точек (даже концов) с проведенными ранее. Побеждает тот, кто сделал последний ход. Кто выигрывает при правильной игре: начинающий игру или его партнер?
  б) Тот же вопрос для 12-угольника.

ВверхВниз   Решение


Прямая, проходящая через вершину B треугольника ABC, пересекает сторону AC в точке K, а описанную окружность в точке M.
Найдите геометрическое место центров описанных окружностей треугольников AMK.

ВверхВниз   Решение


Окружность ω вписана в треугольник ABC, в котором  AB < AC.  Вневписанная окружность этого треугольника касается стороны BC в точке A'. Точка X выбирается на отрезке A'A так, что отрезок A'X не пересекает ω. Касательные, проведённые из X к ω, пересекают отрезок BC в точках Y и Z. Докажите, что сумма  XY + XZ  не зависит от выбора точки X.

ВверхВниз   Решение


Автор: Соколов А.

Существует ли такое натуральное $n$, что для любых вещественных чисел $x$ и $y$ найдутся вещественные числа $a_1, \ldots, a_n$, удовлетворяющие равенствам $$x = a_1 + \ldots + a_n\quad \text{и} \quad y = \frac{1}{a_1}+ \ldots + \frac{1}{a_n}?$$

ВверхВниз   Решение


Некоторые стороны выпуклого многоугольника красные, остальные синие. Сумма длин красных сторон меньше половины периметра, и нет ни одной пары соседних синих сторон. Докажите, что в этот многоугольник нельзя вписать окружность.

ВверхВниз   Решение


Существует ли треугольник, который можно разрезать: а) на 3 равных треугольника, подобных исходному?; б) на 5 треугольников, подобных исходному (не обязательно равных)?

ВверхВниз   Решение


Автор: Тыщук К.

Исходно на доске написаны многочлены  x³ – 3x² + 5  и  x² – 4x.  Если на доске уже написаны многочлены  f(x) и g(x), разрешается дописать на неё многочлены  f(x) ± g(x),  f(x)g(x),  f(g(x))  и  cf(x),  где c – произвольная (не обязательно целая) константа. Может ли на доске после нескольких операций появиться многочлен вида  xn – 1  (при натуральном n)?

ВверхВниз   Решение


Четырёхугольник ABCD вписан в окружность; O1, O2, O3, O4 — центры окружностей, вписанных в треугольники ABC, BCD, CDA и DAB. Докажите, что O1O2O3O4 -- прямоугольник.

Вверх   Решение

Задачи

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 83]      



Задача 108220

Темы:   [ Угол между касательной и хордой ]
[ Вспомогательная окружность ]
[ Отрезок, видимый из двух точек под одним углом ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4+
Классы: 8,9

Окружность, вписанная в угол с вершиной O касается его сторон в точках A и B , K – произвольная точка на меньшей из двух дуг AB этой окружности. На прямой OB взята точка L такая, что прямые OA и KL параллельны. Пусть M – точка пересечения окружности , описанной около треугольника KLB , с прямой AK , отличная от K . Докажите, что прямая OM касается окружности .
Прислать комментарий     Решение


Задача 54640

Темы:   [ ГМТ - окружность или дуга окружности ]
[ Касающиеся окружности ]
[ Отрезок, видимый из двух точек под одним углом ]
Сложность: 4+
Классы: 8,9

На окружности заданы две точки A и B. Проводятся всевозможные пары окружностей, касающихся внешним образом друг друга и касающихся внешним образом данной окружности в точках A и B. Какое множество образуют точки взаимного касания этих пар окружностей?

Прислать комментарий     Решение


Задача 55536

Темы:   [ Углы между биссектрисами ]
[ Вспомогательная окружность ]
[ Отрезок, видимый из двух точек под одним углом ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 5-
Классы: 8,9

Четырёхугольник ABCD вписан в окружность; O1, O2, O3, O4 — центры окружностей, вписанных в треугольники ABC, BCD, CDA и DAB. Докажите, что O1O2O3O4 -- прямоугольник.

Прислать комментарий     Решение


Задача 52492

Темы:   [ Вспомогательная окружность ]
[ Углы между биссектрисами ]
[ Вписанные и описанные окружности ]
[ Отрезок, видимый из двух точек под одним углом ]
[ Ромбы. Признаки и свойства ]
Сложность: 3
Классы: 8,9

В остроугольном треугольнике ABC угол A равен 60°. Докажите, что биссектриса одного из углов, образованных высотами, проведёнными из вершин B и C, проходит через центр описанной окружности этого треугольника.

Прислать комментарий     Решение

Задача 64918

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Отрезок, видимый из двух точек под одним углом ]
[ Конкуррентность высот. Углы между высотами. ]
Сложность: 3+
Классы: 9,10,11

Автор: Ивлев Ф.

Дан прямоугольный треугольник ABC. Пусть M – середина гипотенузы AB, O – центр описанной окружности ω треугольника CMB. Прямая AC вторично пересекает окружность ω в точке K. Прямая KO пересекает описанную окружность треугольника ABC в точке L. Докажите, что прямые AL и KM пересекаются на описанной окружности треугольника ACM.

Прислать комментарий     Решение

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 83]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .