Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 23 задачи
Версия для печати
Убрать все задачи

Дан куб. Три плоскости, параллельные граням, разделили его на 8 параллелепипедов. Их покрасили в шахматном порядке. Объёмы чёрных параллелепипедов оказались равны 1, 6, 8, 12.
Найдите объёмы белых параллелепипедов.

Вниз   Решение


Пусть a, b, c, d — комплексные числа, причем углы a0b и c0d равны и противоположно ориентированы. Докажите, что тогда $ \Im$abcd = 0.

ВверхВниз   Решение


а) Постройте с помощью одного циркуля отрезок, который в два раза длиннее данного отрезка.
б) Постройте с помощью одного циркуля отрезок, который в n раз длиннее данного отрезка.

ВверхВниз   Решение


Сфера единичного радиуса касается всех ребер некоторой треугольной призмы. Чему может быть равен объем этой призмы? Ответ округлите до сотых.

ВверхВниз   Решение


На высоте BD треугольника ABC взята такая точка E, что  ∠AEC = 90°.  Точки O1 и O2 – центры описанных окружностей треугольников AEB и CEB; F, L – середины отрезков AC и O1O2. Докажите, что точки L, E, F лежат на одной прямой.

ВверхВниз   Решение


Докажите, что отличная от A точка пересечения окружностей, построенных на сторонах AB и AC треугольника ABC как на диаметрах, лежит на прямой BC.

ВверхВниз   Решение


Разделите окружность с данным центром на шесть равных частей, пользуясь только циркулем.

ВверхВниз   Решение


Пользуясь только циркулем, удвойте данный орезок, то есть постройте для данных точек A и B такую точку C, чтобы точки A, B, C лежали на одной прямой (B между A и C) и  AC = 2AB.

ВверхВниз   Решение


Постройте с помощью одного циркуля точку, симметричную точке A относительно прямой, проходящей через данные точки B и C.

ВверхВниз   Решение


Докажите, что во всяком описанном четырёхугольнике середины диагоналей и центр вписанной окружности расположены на одной прямой.

ВверхВниз   Решение


Постройте треугольник по a, ha и b/c.

ВверхВниз   Решение


В классе учится 23 человека. В течение года каждый ученик этого класса один раз праздновал день рождения, на который пришли некоторые (хотя бы один, но не все) его одноклассники. Могло ли оказаться, что каждые два ученика этого класса встретились на таких празднованиях одинаковое число раз? (Считается, что на каждом празднике встретились каждые два гостя, а также именинник встретился со всеми гостями.)

ВверхВниз   Решение


Докажите, что для монотонно возрастающей функции f (x) уравнения x = f (f (x)) и x = f (x) равносильны.

ВверхВниз   Решение


Докажите, что при  x ∈ (0, π/2)  выполняется неравенство  

ВверхВниз   Решение


С помощью циркуля и линейки постройте параллелограмм ABCD по отрезкам AB, AC и AD.

ВверхВниз   Решение


Докажите, что степень точки P относительно окружности S равна d2 - R2, где R — радиус Sd — расстояние от точки P до центра S.

ВверхВниз   Решение


Автор: Шноль Д.Э.

Каждая из функций $f(x)$ и $g(x)$ определена на всей числовой прямой и не является строго монотонной. Может ли быть, что и их сумма, и их разность строго монотонны на всей числовой прямой?

ВверхВниз   Решение


Центр вписанной окружности треугольника ABC симметричен центру описанной окружности относительно стороны AB. Найдите углы треугольника ABC.

ВверхВниз   Решение


Постройте треугольник по высоте, основанию и медиане, проведённой к этому основанию.

ВверхВниз   Решение


С помощью циркуля и линейки постройте параллелограмм по стороне и диагоналям.

ВверхВниз   Решение


Докажите, что все углы, образованные сторонами и диагоналями правильного n-угольника, кратны  180°/n.

ВверхВниз   Решение


Две окружности пересекаются в точках A и B. Точка X лежит на прямой AB, но не на отрезке AB. Докажите, что длины всех касательных, проведенных из точки X к окружностям, равны.

ВверхВниз   Решение


В окружность вписаны равнобедренные трапеции ABCD и  A1B1C1D1 с соответственно параллельными сторонами. Докажите, что AC = A1C1.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 49]      



Задача 56572

Тема:   [ Связь величины угла с длиной дуги и хорды ]
Сложность: 2
Классы: 8,9

В окружность вписаны равнобедренные трапеции ABCD и  A1B1C1D1 с соответственно параллельными сторонами. Докажите, что AC = A1C1.
Прислать комментарий     Решение


Задача 56573

Тема:   [ Связь величины угла с длиной дуги и хорды ]
Сложность: 2
Классы: 8,9

Из точки M, двигающейся по окружности, опускаются перпендикуляры MP и MQ на диаметры AB и CD. Докажите, что длина отрезка PQ не зависит от положения точки M.
Прислать комментарий     Решение


Задача 56577

Тема:   [ Связь величины угла с длиной дуги и хорды ]
Сложность: 3
Классы: 8,9

Внутри квадрата ABCD выбрана точка M так, что $ \angle$MAC = $ \angle$MCD = $ \alpha$. Найдите величину угла ABM.
Прислать комментарий     Решение


Задача 58385

Тема:   [ Связь величины угла с длиной дуги и хорды ]
Сложность: 3
Классы: 9,10

Пусть a, b, c, d — комплексные числа, причем углы a0b и c0d равны и противоположно ориентированы. Докажите, что тогда $ \Im$abcd = 0.

Прислать комментарий     Решение


Задача 58386

Тема:   [ Связь величины угла с длиной дуги и хорды ]
Сложность: 3
Классы: 9,10

Докажите, что если треугольники abc и a'b'c' на комплексной плоскости собственно подобны, то

(b - a)/(c - a) = (b' - a')/(c' - a').


Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 49]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .