ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Пусть T1, T2 – точки касания вневписанных окружностей треугольника ABC со сторонами BC и AC соответственно. Оказалось, что точка, симметричная центру вписанной окружности треугольника относительно середины AB, лежит на описанной окружности треугольника CT1T2. Найдите угол BCA.
На плоскости проведены n окружностей так,
что любые две из них пересекаются в паре точек, и никакие три не
проходят через одну точку. На сколько частей делят плоскость эти
окружности?
Докажите, что две непересекающиеся окружности S1 и S2
(или окружность и прямую) можно при помощи
инверсии перевести в пару концентрических окружностей.
Докажите, что при инверсии относительно описанной окружности изодинамические
центры треугольника переходят друг в друга.
На боковых сторонах AB и AC равнобедренного треугольника ABC отметили точки K и L соответственно так, что AK = CL и ∠ALK + ∠LKB = 60°. Найдите наибольшее число цветов, в которые можно покрасить рёбра куба (каждое ребро одним цветом) так, чтобы для каждой пары цветов нашлись два соседних ребра, покрашенные в эти цвета. Соседними считаются рёбра, имеющие общую вершину. Площадь ромба ABCD равна 2. В треугольник ABD вписана окружность, которая касается стороны AB в точке K. Через точку K проведена прямая KL, параллельная диагонали AC ромба (точка L лежит на стороне BC). Найдите угол BAD, если известно, что площадь треугольника KLB равна a. Найдите производящие функции последовательности многочленов Фибоначчи F(x, z) = F0(x) + F1(x)z + F2(x)z² + ... + Fn(x)zn + ...
На доске написано n натуральных чисел. Пусть ak – количество тех из них, которые больше k. Исходные числа стерли и вместо них написали все положительные ak. Докажите, что если с новыми числами сделать то же самое, то на доске окажется исходный набор чисел. а) Найдите производящую функцию последовательности чисел Люка (определение чисел Люка смотри в задаче 60585) б) Пользуясь этой функцией, выразите Ln через φ и
Точки K и N расположены соответственно на сторонах AB и AC треугольника ABC, причём AK = BK и AN = 2NC. На сторонах AD и CD параллелограмма ABCD взяты точки M и N так, что MN || AC. Докажите, что SABM = SCBN. Среди n рыцарей каждые двое – либо друзья, либо враги. У каждого из рыцарей ровно три врага, причём враги его друзей являются его врагами. Назовем выпуклый семиугольник особым, если три
его диагонали пересекаются в одной точке. Докажите, что,
слегка пошевелив одну из вершин особого семиугольника,
можно получить неособый семиугольник.
Докажите, что в любом выпуклом многоугольнике,
кроме параллелограмма, можно выбрать три стороны, при
продолжении которых образуется треугольник, объемлющий
данный многоугольник.
Дана равнобедренная трапеция ABCD. Известно, что AD = 10, BC = 2, AB = CD = 5. Биссектриса угла BAD пересекает продолжение основания BC Радиус вписанной в треугольник PQR окружности равен 5, причём RP = RQ. На прямой PQ взята точка A, удалённая от прямых PR и QR на расстояния 12 и 2 соответственно. Найдите косинус угла AQR. Семиугольник, три угла которого равны по 120o , вписан в окружность. Могут ли все его стороны быть различными по длине? Дана окружность и точка вне её; из этой точки мы совершаем путь по замкнутой
ломаной, состоящей из отрезков прямых, касательных к окружности, и заканчиваем
путь в начальной точке. Участки пути, по которым мы приближались к центру
окружности, берём со знаком плюс, а участки пути, по которым мы
удалялись от центра, — со знаком минус. Докажите, что для любого
такого пути сумма длин участков пути, взятых с указанными
знаками, равна нулю.
Четырехугольник ABCD вписан в окружность,
причем касательные в точках B и D пересекаются в точке K,
лежащей на прямой AC.
|
Страница: << 46 47 48 49 50 51 52 >> [Всего задач: 772]
Дан параллелограмм ABCD. Вневписанная окружность
треугольника ABD касается продолжений сторон AD и AB в
точках M и N. Докажите, что точки пересечения отрезка MN с BC
и CD лежат на вписанной окружности треугольника BCD.
На каждой стороне четырехугольника ABCD взято по две
точки, и они соединены так, как показано на рис. Докажите, что если
все пять заштрихованных четырехугольников описанные,
то четырехугольник ABCD тоже описанный.
Дана окружность и точка вне её; из этой точки мы совершаем путь по замкнутой
ломаной, состоящей из отрезков прямых, касательных к окружности, и заканчиваем
путь в начальной точке. Участки пути, по которым мы приближались к центру
окружности, берём со знаком плюс, а участки пути, по которым мы
удалялись от центра, — со знаком минус. Докажите, что для любого
такого пути сумма длин участков пути, взятых с указанными
знаками, равна нулю.
Из точки A проведены касательные AB и AC
к окружности и секущая, пересекающая окружность в точках D
и E; M — середина отрезка BC. Докажите, что
BM2 = DM . ME
и угол DME в два раза больше угла DBE или угла DCE; кроме того,
Четырехугольник ABCD вписан в окружность,
причем касательные в точках B и D пересекаются в точке K,
лежащей на прямой AC.
Страница: << 46 47 48 49 50 51 52 >> [Всего задач: 772]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке