Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Существует ли непостоянный многочлен $P(x)$, который можно представить в виде суммы  $a(x) + b(x)$,  где $a(x)$ и $b(x)$ – квадраты многочленов с действительными коэффициентами,
  а) ровно одним способом?
  б) ровно двумя способами?
Способы, отличающиеся лишь порядком слагаемых, считаются одинаковыми.

Вниз   Решение


С помощью циркуля и линейки постройте треугольник по углу, противолежащей стороне и разности двух других сторон.

ВверхВниз   Решение


В выпуклом 2002-угольнике провели несколько диагоналей, не пересекающихся внутри 2002-угольника. В результате 2002-угольник разделился на 2000 треугольников. Могло ли случиться, что ровно у половины этих треугольников все стороны являются диагоналями этого 2002-угольника?

ВверхВниз   Решение


Постройте треугольник ABC по углам A и B и разности сторон AC и BC.

ВверхВниз   Решение


Автор: Серов М.

Пять отрезков таковы, что из любых трех из них можно составить треугольник. Докажите, что хотя бы один из этих треугольников остроугольный.

ВверхВниз   Решение


Все коэффициенты многочлена равны 1, 0 или –1.
Докажите, что все его действительные корни (если они существуют) заключены в отрезке  [–2, 2].

ВверхВниз   Решение


Докажите, что середины всех хорд данной длины, проведённых в данной окружности, лежат на некоторой окружности.

ВверхВниз   Решение


Докажите, что треугольник ABC остроугольный тогда и только тогда, когда длины его проекций на три различных направления равны.

ВверхВниз   Решение


Докажите, что радикальная ось двух пересекающихся окружностей проходит через точки их пересечения.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 125]      



Задача 56715

Тема:   [ Радикальная ось ]
Сложность: 5
Классы: 9

Докажите, что радикальная ось двух пересекающихся окружностей проходит через точки их пересечения.
Прислать комментарий     Решение


Задача 56716

Тема:   [ Радикальная ось ]
Сложность: 5
Классы: 9

На плоскости даны три окружности, центры которых не лежат на одной прямой. Проведем радикальные оси для каждой пары этих окружностей. Докажите, что все три радикальные оси пересекаются в одной точке.

Прислать комментарий     Решение


Задача 56718

Тема:   [ Радикальная ось ]
Сложность: 5
Классы: 9

Постройте радикальную ось двух непересекающихся окружностей S1 и S2.
Прислать комментарий     Решение


Задача 56719

Тема:   [ Радикальная ось ]
Сложность: 5
Классы: 9

Даны две неконцентрические окружности S1 и S2. Докажите, что множеством центров окружностей, пересекающих обе эти окружности под прямым углом, является их радикальная ось, из которой (если данные окружности пересекаются) выброшена их общая хорда.
Прислать комментарий     Решение


Задача 56720

Тема:   [ Радикальная ось ]
Сложность: 5
Классы: 9

а) Докажите, что середины четырех общих касательных к двум непересекающимся кругам лежат на одной прямой.
б) Через две из точек касания общих внешних касательных с двумя окружностями проведена прямая. Докажите, что окружности высекают на этой прямой равные хорды.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 125]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .