ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Женя не успел влезть в лифт на первом этаже дома и решил пойти по лестнице. На третий этаж он поднимается за 2 минуты. Сколько времени у него займет подъем до девятого этажа? Угловая величина дуги AB равна α < 90°. На продолжении радиуса OA отложен отрезок AC, равный хорде AB, и точка C соединена с B. Найдите угол ACB. В треугольнике ABC угол C прямой. Из центра C радиусом AC описана дуга ADE, пересекающая гипотенузу в точке D, а катет CB – в точке E. Может ли число, получаемое выписыванием в строку друг за другом целых чисел от 1 до n ( n>1 ), одинаково читаться слева направо и справа налево? Пусть ABC – остроугольный треугольник, C' и A' – произвольные точки на сторонах AB и BC соответственно, B' – середина стороны AC. Найдите коэффициент при x у многочлена (x – a)(x – b)(x – c)...(x – z). Даны треугольник ABC и ромб BDEF, все вершины которого лежат на
сторонах треугольника ABC, а угол при вершине E – тупой. Точки Z и W изогонально сопряжены относительно правильного треугольника.
При инверсии относительно описанной окружности точки Z и W переходят в
Z* и W*. Докажите, что середина отрезка Z*W* лежит на вписанной
окружности.
Круг радиуса 1 покрыт семью одинаковыми кругами. Докажите, что их радиус не меньше ½. Про приведённый многочлен P(x) = xn + an–1xn–1 + ... + a1x + a0 с действительными коэффициентами известно, что при некотором натуральном
Постройте прямоугольный треугольник по катету и отношению второго катета к гипотенузе.
Точки K и L – середины сторон АВ и ВС правильного шестиугольника АВСDEF. Отрезки KD и LE пересекаются в точке М. Площадь треугольника DEM равна 12. Найдите площадь четырёхугольника KBLM. Прямая, проходящая через вершину B треугольника ABC, пересекает сторону AC в точке K, а описанную окружность в точке M. Докажите, что если окружность ортогональна двум окружностям пучка, то она
ортогональна и всем остальным окружностям пучка.
Пусть x, y, z – любые числа из интервала (0, π/2). Докажите неравенство Точка E – середина той дуги AB описанной окружности треугольника ABC, на которой лежит точка C; C1 – середина стороны AB. Из точки E опущен перпендикуляр EF на AC. Докажите, что: Рассматривается произвольный многоугольник (возможно, невыпуклый). (Хордой многоугольника называется отрезок, концы которого принадлежат контуру многоугольника, а сам он целиком принадлежит многоугольнику, включая контур). Высоты треугольника ABC пересекаются в точке H.
Существует ли такой многочлен f(x) степени 6, что для любого x выполнено равенство f(sinx) + f(cosx) = 1? |
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 63]
Многочлен степени $n > 1$ имеет $n$ разных корней $х_1$, $х_2$, ..., $х_n$. Его производная имеет корни $y_1$, $y_2$, ..., $y_{n-1}$. Докажите неравенство $$\frac{x_1^2 + \dots + x_n^2}{n} > \frac{y_1^2 + \dots + y_{n-1}^2}{n-1}.$$
Существует ли такой многочлен f(x) степени 6, что для любого x выполнено равенство f(sinx) + f(cosx) = 1?
Исходно на доске написаны многочлены x³ – 3x² + 5 и x² – 4x. Если на доске уже написаны многочлены f(x) и g(x), разрешается дописать на неё многочлены f(x) ± g(x), f(x)g(x), f(g(x)) и cf(x), где c – произвольная (не обязательно целая) константа. Может ли на доске после нескольких операций появиться многочлен вида xn – 1 (при натуральном n)?
Пусть f(x) – некоторый многочлен ненулевой степени.
Существуют ли такие значения a и b, при которых уравнение х4 – 4х3 + 6х² + aх + b = 0 имеет четыре различных действительных корня?
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 63]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке