Processing math: 100%
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 21 задача
Версия для печати
Убрать все задачи

Около трапеции KLMN описана окружность, причём основание KN является её диаметром. Известно, что KN = 4, LM = 2. Хорда MT пересекает диаметр KN в точке S, причём KS : SN = 1 : 3. Найдите площадь треугольника STN.

Вниз   Решение


В треугольнике ABC сторона AB больше стороны BC. Пусть A1 и B1 – середины сторон BC и AC, а B2 и C2 – точки касания вписанной окружности со сторонами AC и AB. Докажите, что отрезки A1B1 и B2C2 пересекаются в точке X, лежащей на биссектрисе угла B.

ВверхВниз   Решение


В треугольнике ABC точка M лежит на стороне AC, а точка L на стороне BC расположена так, что  BL : LC = 2 : 5.  Прямая, проходящая через точку L параллельно стороне AB, пересекает отрезок BM в точке O, причём  BO : OM = 7 : 4.  Найдите отношение, в котором точка M делит сторону AC.

ВверхВниз   Решение


На стороне AC треугольника ABC произвольно выбрана точка D. Касательная, проведённая в точке D к описанной окружности треугольника BDC, пересекает сторону AB в точке C1; аналогично определяется точка A1. Докажите, что  A1C1 || AC.

ВверхВниз   Решение


На стороне BC равностороннего треугольника ABC как на диаметре внешним образом построена полуокружность, на которой взяты точки K и L, делящие полуокружность на три равные дуги. Докажите, что прямые AK и AL делят отрезок BC на равные части.

ВверхВниз   Решение


Дан ромб со стороной a и острым углом α.
Найдите радиус окружности, проходящей через две соседние вершины ромба и касающейся противоположной стороны ромба или её продолжения.

ВверхВниз   Решение


На рисунке изображено, как изменялся курс тугрика в течение недели. У Пети было 30 рублей. В один из дней недели он обменял все свои рубли на тугрики. Потом он обменял все тугрики на рубли. Затем он ещё раз обменял все вырученные рубли на тугрики, и в конце концов, обменял все тугрики обратно на рубли. Напишите, в какие дни он совершал эти операции, если в воскресенье у него оказалось 54 рубля. (Достаточно привести пример.)

ВверхВниз   Решение


В пятиугольнике ABCDE углы ABC и AED – прямые,  AB = AE  и  BC = CD = DE.  Диагонали BD и CE пересекаются в точке F.
Докажите, что  FA = AB.

ВверхВниз   Решение


Автор: Mahdi Etesami Fard

Окружность ω, вписанная в треугольник ABC, касается сторон BC, CA и AB в точках D, E и F соответственно. Перпендикуляр из E на DF пересекает прямую BC в точке X, а перпендикуляр из F на DE пересекает BC в точке Y. Отрезок AD пересекает ω во второй раз в точке Z. Докажите, что описанная окружность треугольника XYZ касается ω.

ВверхВниз   Решение


Докажите равенство:

ctg 30o + ctg 75o = 2.


ВверхВниз   Решение


В треугольнике ABC угол C равен 30°, а угол A – острый. Перпендикулярно стороне BC проведена прямая, отсекающая от треугольника ABC треугольник CNM (точка N лежит между вершинами B и C). Площади треугольников CNM и ABC относятся, как  3 : 16.  Отрезок MN равен половине высоты BH треугольника ABC. Найдите отношение  AH : HC.

ВверхВниз   Решение


Автор: Белухов Н.

Вершины треугольника DEF лежат на разных сторонах треугольника ABC. Касательные, проведенные из центра вписанной в треугольник DEF окружности к вневписанным окружностям треугольника ABC, равны. Докажите, что 4SDEFSABC.

ВверхВниз   Решение


В трапеции ABCD одно основание в два раза больше другого. Меньшее основание равно c. Диагонали трапеции пересекаются под прямым углом, а отношение боковых сторон равно k. Найдите боковые стороны трапеции.

ВверхВниз   Решение


В окружность радиуса 2$ \sqrt{7}$ вписана трапеция ABCD, причём её основание AD является диаметром, а угол BAD равен 60o. Хорда CE пересекает диаметр AD в точке P, причём AP : PD = 1 : 3. Найдите площадь треугольника BPE.

ВверхВниз   Решение


Дан угол с вершиной O и окружность, касающаяся его сторон в точках A и B. Из точки A параллельно OB проведён луч, пересекающий окружность в точке C. Прямая OC пересекает окружность в точке E. Прямые AE и OB пересекаются в точке K. Докажите, что  OK = KB.

ВверхВниз   Решение


Автор: Фольклор

На экране компьютера горит число, которое каждую минуту увеличивается на 102. Начальное значение числа 123. Программист Федя имеет возможность в любой момент изменять порядок цифр числа, находящегося на экране. Может ли он добиться того, чтобы число никогда не стало четырёхзначным?

ВверхВниз   Решение


Дан остроугольный треугольник ABC. С помощью циркуля и линейки постройте на его сторонах AB и BC соответственно точки X и Y, для которых
BX = XY = YC.

ВверхВниз   Решение


В окружность радиуса 17 вписан четырёхугольник, диагонали которого взаимно перпендикулярны и находятся на расстоянии 8 и 9 от центра окружности. Найдите стороны четырёхугольника.

ВверхВниз   Решение


В равнобедренной трапеции ABCD  AB = CD = 3,  основание  AD = 7,  ∠BAD = 60°.  На диагонали BD расположена точка M так, что  BM : MD = 3 : 5.
Какую из сторон трапеции: BC или CD пересекает продолжение отрезка AM?

ВверхВниз   Решение


Около окружности радиуса R описана трапеция. Хорда, соединяющая точки касания окружности с боковыми сторонами трапеции, равна a. Хорда параллельна основанию трапеции. Найдите площадь трапеции.

ВверхВниз   Решение


Вершины равнобедренного треугольника и центр его описанной окружности лежат на четырёх различных сторонах квадрата.
Найдите углы треугольника.

Вверх   Решение

Задачи

Страница: << 51 52 53 54 55 56 57 >> [Всего задач: 604]      



Задача 55771

Темы:   [ Подобные треугольники и гомотетия (построения) ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9

Дан остроугольный треугольник ABC. С помощью циркуля и линейки постройте на его сторонах AB и BC соответственно точки X и Y, для которых
BX = XY = YC.

Прислать комментарий     Решение

Задача 64385

Темы:   [ Пятиугольники ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Вписанные и описанные окружности ]
Сложность: 3+
Классы: 8,9

В пятиугольнике ABCDE углы ABC и AED – прямые,  AB = AE  и  BC = CD = DE.  Диагонали BD и CE пересекаются в точке F.
Докажите, что  FA = AB.

Прислать комментарий     Решение

Задача 64812

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Вписанные и описанные окружности ]
[ Проекция на прямую (прочее) ]
[ Вписанный угол равен половине центрального ]
Сложность: 3+
Классы: 8,9,10

Вершины равнобедренного треугольника и центр его описанной окружности лежат на четырёх различных сторонах квадрата.
Найдите углы треугольника.

Прислать комментарий     Решение

Задача 65053

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Равные треугольники. Признаки равенства (прочее) ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Удвоение медианы ]
[ Центральная симметрия помогает решить задачу ]
Сложность: 3+
Классы: 8,9

Точка К – середина гипотенузы АВ прямоугольного равнобедренного треугольника ABC. Точки L и М выбраны на катетах ВС и АС соответственно так, что  BL = СМ.  Докажите, что треугольник LMK – также прямоугольный равнобедренный.

Прислать комментарий     Решение

Задача 65065

Темы:   [ Четырехугольники (прочее) ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Вспомогательные равные треугольники ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 3+
Классы: 8,9

В выпуклом четырёхугольнике ABCD выполнены соотношения  AB = BD,  ∠ABD = ∠DBC.  На диагонали BD нашлась такая точка K, что  BK = BC.
Докажите, что  ∠KAD = ∠KCD.

Прислать комментарий     Решение

Страница: << 51 52 53 54 55 56 57 >> [Всего задач: 604]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .