Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 22 задачи
Версия для печати
Убрать все задачи

Высоты AA1, BB1, CC1 и DD1 тетраэдра ABCD пересекаются в центре H сферы, вписанной в тетраэдр A1B1C1D1.
Докажите, что тетраэдр ABCD – правильный.

Вниз   Решение


Можно ли расположить бесконечное число равных выпуклых многогранников в слое, ограниченном двумя параллельными плоскостями, так чтобы ни один многогранник нельзя было вынуть из слоя, не сдвигая остальных?

ВверхВниз   Решение


Сфера вписана в правильную треугольную пирамиду SKLM ( S – вершина), а также вписана в прямую треугольную призму ABCA1B1C1 , у которой AB=AC , BC=4 , боковое ребро AA1 лежит на прямой KL . Найдите радиус сферы, если известно, что прямая SM параллельна плоскости BB1C1C .

ВверхВниз   Решение


Зайчиха купила для своих семерых зайчат семь барабанов разных размеров и семь пар палочек разной длины. Если зайчонок видит, что у него и барабан больше, и палочки длиннее, чем у кого-то из братьев, он начинает громко барабанить. Какое наибольшее число зайчат сможет начать барабанить?

ВверхВниз   Решение


В некоторых клетках таблицы 10x10 расставлены несколько крести- ков и несколько ноликов. Известно, что нет линии (строки или столб- ца), полностью заполненной одинаковыми значками (крестиками или ноликами). Однако, если в любую пустую клетку поставить любой значок, то это условие нарушится. Какое минимальное число значков может стоять в таблице?

ВверхВниз   Решение


Четырехугольник ABCD описан около окружности. Докажите, что радиус этой окружности меньше суммы радиусов окружностей, вписанных в треугольники ABC и ACD .

ВверхВниз   Решение


В четырехугольник ABCD можно вписать окружность. Пусть K — точка пересечения его диагоналей. Известно, что AB > BC > BK, BK = $ \sqrt{14}$ + 2, косинус угла BCK равен ( $ \sqrt{14}$ - 2) /6, а периметр треугольника BKC равен 2$ \sqrt{14}$ + 6. Найдите DC.

ВверхВниз   Решение


Доказать, что если 21 человек собрали 200 орехов, то есть два человека, собравшие поровну орехов.

ВверхВниз   Решение


На сторонах AB, AC и BC правильного треугольника ABC расположены соответственно точки C1, B1 и A1 так, что треугольник A1B1C1 – правильный. Отрезок BB1 пересекает сторону C1A1 в точке O, причём  BO/OB1 = k.  Найдите отношение площади треугольника ABC к площади треугольника A1B1C1.

ВверхВниз   Решение


В треугольнике ABC на стороне AC взята точка K, причём  AK = 1,  KC = 3,  а на стороне AB взята точка L, причём  AL : LB = 2 : 3.  Пусть Q – точка пересечения прямых BK и CL. Площадь треугольника AQC равна 1. Найдите высоту треугольника ABC, опущенную из вершины B.

ВверхВниз   Решение


Автор: Фольклор

На доске записаны числа 1, 21, 2², 2³, 24, 25. Разрешается стереть любые два числа и вместо них записать их разность – неотрицательное число.
Может ли на доске в результате нескольких таких операций остаться только число 15?

ВверхВниз   Решение


Про числа a и b известно, что a=b+1 . Может ли оказаться так, что a4=b4 ?

ВверхВниз   Решение


Медианы треугольника равны 5, 6 и 5. Найдите площадь треугольника.

ВверхВниз   Решение


Художник-авангардист Змий Клеточкин покрасил несколько клеток доски размером 7×7, соблюдая правило: каждая следующая закрашиваемая клетка должна соседствовать по стороне с предыдущей закрашенной клеткой, но не должна соседствовать ни с одной другой ранее закрашенной клеткой. Ему удалось покрасить 31 клетку.

Побейте его рекорд — закрасьте а) 32 клетки; б) 33 клетки.

ВверхВниз   Решение


В каждом из $16$ отделений коробки $4\times 4$ лежит по золотой монете. Коллекционер помнит, что какие-то две лежащие рядом монеты (соседние по стороне) весят по $9$ грамм, а остальные по $10$ грамм. За какое наименьшее число взвешиваний на весах, показывающих общий вес в граммах, можно определить эти две монеты?

ВверхВниз   Решение



Пусть M - точка пересечения медиан треугольника ABC, O - произвольная точка пространства. Докажите, что

OM2 = $\displaystyle {\textstyle\frac{1}{3}}$(OA2 + OB2 + OC2) - $\displaystyle {\textstyle\frac{1}{9}}$(AB2 + BC2 + AC2).

ВверхВниз   Решение


а) К любому ли шестизначному числу, начинающемуся с цифры 5, можно приписать еще 6 цифр так, чтобы полученное 12-значное число было полным квадратом?
б) Тот же вопрос про число, начинающееся с 1.
в) Найдите для каждого n такое наименьшее  k = k(n),  что к каждому n-значному числу можно приписать еще k цифр так, чтобы полученное (n+k)-значное число было полным квадратом.

ВверхВниз   Решение


Докажите, что центр описанной окружности прямоугольного треугольника совпадает с серединой гипотенузы.

ВверхВниз   Решение



Найдите объем наклонной треугольной призмы, основанием которой служит равносторонний треугольник со стороной, равной a, если боковое ребро призмы равно стороне основания и наклонено к плоскости основания под углом 60o.

ВверхВниз   Решение


Из 54 красных и 54 белых брусков 1×1×2 сложили куб 6×6×6.
Какое наибольшее количество красных клеточек могло оказаться на поверхности куба?

ВверхВниз   Решение


В пруд пустили 30 щук, которые постепенно поедают друг друга. Щука считается сытой, если она съела не менее трёх щук (сытых или голодных). Какое наибольшее число щук может насытиться?

ВверхВниз   Решение


Играют двое. У первого 1000 чётных карточек (2, 4, ..., 2000), у второго – 1001 нечётная (1, 3, ... , 2001). Ходят по очереди, начинает первый. Ход состоит в следующем: игрок, чья очередь ходить, выкладывает одну из своих карточек, а другой, посмотрев на неё, выкладывает одну из своих карточек; тот, у кого число на карточке больше, записывает себе одно очко, а обе выложенные карточки выбрасываются. Всего получается 1000 ходов (одна карточка второго не используется). Какое наибольшее число очков может гарантировать себе каждый из игроков (как бы ни играл его соперник)?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 138]      



Задача 66826

Темы:   [ Теория алгоритмов (прочее) ]
[ Оценка + пример ]
Сложность: 4-
Классы: 8,9,10,11

В каждой клетке полоски длины 100 стоит по фишке. Можно за 1 рубль поменять местами любые две соседние фишки, а также можно бесплатно поменять местами любые две фишки, между которыми стоят ровно 4 фишки. За какое наименьшее количество рублей можно переставить фишки в обратном порядке?

Прислать комментарий     Решение

Задача 65395

Темы:   [ Теория игр (прочее) ]
[ Оценка + пример ]
Сложность: 4
Классы: 8,9,10,11

Играют двое. У первого 1000 чётных карточек (2, 4, ..., 2000), у второго – 1001 нечётная (1, 3, ... , 2001). Ходят по очереди, начинает первый. Ход состоит в следующем: игрок, чья очередь ходить, выкладывает одну из своих карточек, а другой, посмотрев на неё, выкладывает одну из своих карточек; тот, у кого число на карточке больше, записывает себе одно очко, а обе выложенные карточки выбрасываются. Всего получается 1000 ходов (одна карточка второго не используется). Какое наибольшее число очков может гарантировать себе каждый из игроков (как бы ни играл его соперник)?

Прислать комментарий     Решение

Задача 66339

Темы:   [ Теория алгоритмов (прочее) ]
[ Оценка + пример ]
Сложность: 4
Классы: 8,9,10,11

Город представляет из себя клетчатый прямоугольник, в каждой клетке стоит пятиэтажный дом. Закон о реновации позволяет выбрать две соседних по стороне клетки, в которых стоят дома, и снести тот дом, где меньше этажей (либо столько же). При этом над вторым домом надстраивается столько этажей, сколько было в снесённом доме. Какое наименьшее число домов можно оставить в городе, пользуясь законом о реновации, если город имеет размеры
  а) 20×20 клеток;
  б) 50×90 клеток?

Прислать комментарий     Решение

Задача 66344

Темы:   [ Теория алгоритмов (прочее) ]
[ Оценка + пример ]
Сложность: 4
Классы: 8,9,10,11

Кусок сыра надо разрезать на части с соблюдением таких правил:
    вначале режем сыр на два куска, затем один из них режем на два куска, затем один из трёх кусков опять режем на два куска, и т.д.;
    после каждого разрезания части могут быть разными по весу, но отношение веса каждой части к весу любой другой должно быть строго больше заданного числа $R$.
  а) Докажите, что при  $R$ = 0,5  можно резать сыр так, что процесс никогда не остановится (после любого числа разрезаний можно будет отрезать ещё один кусок).
  б) Докажите, что если  $R$ > 0,5,  то процесс резки когда-нибудь остановится.
  в) На какое наибольшее число кусков можно разрезать сыр, если  $R$ = 0,6?

Прислать комментарий     Решение

Задача 66583

Темы:   [ Взвешивания ]
[ Оценка + пример ]
Сложность: 4
Классы: 8,9,10,11

В каждом из $16$ отделений коробки $4\times 4$ лежит по золотой монете. Коллекционер помнит, что какие-то две лежащие рядом монеты (соседние по стороне) весят по $9$ грамм, а остальные по $10$ грамм. За какое наименьшее число взвешиваний на весах, показывающих общий вес в граммах, можно определить эти две монеты?
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 138]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .