Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 17 задач
Версия для печати
Убрать все задачи

На каждой стороне квадрата взяли по одной точке. Оказалось, что эти точки являются вершинами прямоугольника, стороны которого параллельны диагоналям квадрата. Найдите периметр прямоугольника, если диагональ квадрата равна 6.

Вниз   Решение


Докажите, что при параллельном переносе окружность переходит в окружность.

ВверхВниз   Решение


Через каждую вершину параллеллограмма проведена прямая, перпендикулярная диагонали, не проходящей через эту вершину. Докажите, что диагонали четырёхугольника, образованного пересечениями четырёх проведённых прямых, перпендикулярны сторонам параллелограмма.

ВверхВниз   Решение


Сторона BC параллелограмма ABCD вдвое больше стороны AB. Биссектрисы углов A и B пересекают прямую CD в точках M и N, причём  MN = 12.
Найдите стороны параллелограмма.

ВверхВниз   Решение


Сторона BC параллелограмма ABCD вдвое больше стороны CD, P – проекция вершины C на прямую AB, M – середина стороны AD.
Докажите, что  ∠DMP = 3∠APM.

ВверхВниз   Решение


В треугольнике ABC проведена высота BM, биссектриса BN и медиана BL. Известно, что AM = MN = NL. Найдите тангенс угла A этого треугольника.

ВверхВниз   Решение


Высоты AD и BE остроугольного треугольника ABC пересекаются в точке H. Описанная окружность треугольника ABH, пересекает стороны AC и BC в точках F и G соответственно. Найдите FG, если  DE = 5 см.

ВверхВниз   Решение


В точках A и B прямой, по одну сторону от неё, восстановлены два перпендикуляра  AA1 = a  и   BB1 = b.
Докажите, что точка пересечения прямых AB1 и A1B будет находиться на одном и том же расстоянии от прямой AB независимо от положения точек A и B.

ВверхВниз   Решение


В прямоугольнике с целыми сторонами m и n, нарисованном на клетчатой бумаге, проведена диагональ.
  а) Через какое число узлов она проходит?
  б) На сколько частей эта диагональ делится линиями сетки?

ВверхВниз   Решение


В параллелограмме ABCD точка E – середина AD. Точка F – основание перпендикуляра, опущенного из B на прямую CE.
Докажите, что треугольник ABF – равнобедренный.

ВверхВниз   Решение


В каком месте следует построить мост MN через реку, разделяющую две данные деревни A и B, чтобы путь AMNB из деревни A в деревню B был кратчайшим (берега реки считаются параллельными прямыми, мост предполагается перпендикулярным к реке).

ВверхВниз   Решение


В треугольнике ABC биссектриса угла BAC пересекает сторону BC в точке M. Известно, что AB = BC = 2AC, AM = 4. Найдите площадь треугольника ABC.

ВверхВниз   Решение


В равнобедренной трапеции ABCD  AB = CD = 3,  основание  AD = 7,  ∠BAD = 60°.  На диагонали BD расположена точка M так, что  BM : MD = 3 : 5.
Какую из сторон трапеции: BC или CD пересекает продолжение отрезка AM?

ВверхВниз   Решение


Отрезок длиной 1 покрыт несколькими лежащими на нем отрезками. Докажите, что среди них можно выбрать несколько попарно непересекающихся отрезков, сумма длин которых не меньше 0,5.

ВверхВниз   Решение


Через вершину B правильного треугольника ABC проведена прямая l. Окружность ωa с центром Ia касается стороны BC в точке A1 и прямых l и AC. Окружность ωc с центром Ic касается стороны BA в точке C1 и прямых l и AC. Докажите, что ортоцентр треугольника A1BC1 лежит на прямой IaIc.

ВверхВниз   Решение


Треугольник $ABC$ равносторонний. На сторонах $AB$ и $AC$ выбрали точки $E$ и $F$, а на продолжении стороны $AB$ – точку $K$ так, что $AE=CF=BK$. Точка $P$ – середина $EF$. Докажите, что угол $KPC$ прямой.

ВверхВниз   Решение


Все грани треугольной пирамиды SABC – остроугольные треугольники. SX и SY – высоты граней ASВ и BSС. Известно, что четырёхугольник AXYC – вписанный. Докажите, что прямые AC и BS перпендикулярны.

Вверх   Решение

Задачи

Страница: << 74 75 76 77 78 79 80 >> [Всего задач: 401]      



Задача 64725

Темы:   [ Признаки и свойства параллелограмма ]
[ Вписанные и описанные окружности ]
[ Четыре точки, лежащие на одной окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Признаки подобия ]
[ Вспомогательные подобные треугольники ]
Сложность: 4-
Классы: 10,11

На сторонах AD и CD параллелограмма ABCD с центром O отмечены такие точки P и Q соответственно, что  ∠AOP = ∠COQ = ∠ABC.
  а) Докажите, что  ∠ABP = ∠CBQ.
  б) Докажите, что прямые AQ и CP пересекаются на описанной окружности треугольника ABC.

Прислать комментарий     Решение

Задача 65989

Темы:   [ Тетраэдр (прочее) ]
[ Теорема о трех перпендикулярах ]
[ Вписанные четырехугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Признаки перпендикулярности ]
Сложность: 4-
Классы: 10,11

Все грани треугольной пирамиды SABC – остроугольные треугольники. SX и SY – высоты граней ASВ и BSС. Известно, что четырёхугольник AXYC – вписанный. Докажите, что прямые AC и BS перпендикулярны.

Прислать комментарий     Решение

Задача 109609

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вспомогательные подобные треугольники ]
[ Теорема Паскаля ]
[ Симметрия помогает решить задачу ]
[ Хорды и секущие (прочее) ]
Сложность: 4-
Классы: 8,9

Автор: Гордон В.

Хорда CD окружности с центром O перпендикулярна ее диаметру AB, а хорда AE делит пополам радиус OC.
Докажите, что хорда DE делит пополам хорду BC.

Прислать комментарий     Решение

Задача 66687

Темы:   [ Вписанные и описанные окружности ]
[ Вписанные четырехугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вспомогательные подобные треугольники ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 4
Классы: 8,9,10,11

В окружности $\omega$, описанной около треугольника $ABC$, хорда $KL$ проходит через середину $M$ отрезка $AB$ и перпендикулярна ей. Некоторая окружность проходит через точки $L$ и $M$ и пересекает отрезок $CK$ в точках $P$ и $Q$ ($Q$ лежит на отрезке $KP$). Пусть $LQ$ пересекает описанную окружность треугольника $KMQ$ в точке $R$. Докажите, что четырехугольник $APBR$ вписанный.
Прислать комментарий     Решение


Задача 66248

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Пересекающиеся окружности ]
[ Четыре точки, лежащие на одной окружности ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Радикальная ось ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4
Классы: 8,9,10

Автор: Якубов А.

Четырёхугольник ABCD вписан в окружность ω с центром O, M1 и M2 – середины сторон AB и CD соответственно; Ω – описанная окружность треугольника OM1M2X1 и X2 – точки пересечения ω с Ω, а Y1 и Y2 – вторые точки пересечения описанных окружностей ω1 и ω2 треугольников CDM1 и ABM2 соответственно с Ω. Докажите, что  X1X2 || Y1Y2.

Прислать комментарий     Решение

Страница: << 74 75 76 77 78 79 80 >> [Всего задач: 401]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .